Skip to main content
Glama

deployment_logs

Retrieve and analyze logs for specific deployments on the railway-mcp server to debug deployment issues, monitor progress, and review build output. Ideal for troubleshooting deployment-related tasks.

Instructions

[API] Get logs for a specific deployment

⚡️ Best for: ✓ Debugging deployment issues ✓ Monitoring deployment progress ✓ Checking build output

⚠️ Not for: × Service runtime logs × Database logs

→ Prerequisites: deployment_list

→ Next steps: deployment_status

→ Related: service_info, deployment_trigger

Input Schema

NameRequiredDescriptionDefault
deploymentIdYesID of the deployment to get logs for
limitNoMaximum number of log entries to fetch

Input Schema (JSON Schema)

{ "$schema": "http://json-schema.org/draft-07/schema#", "additionalProperties": false, "properties": { "deploymentId": { "description": "ID of the deployment to get logs for", "type": "string" }, "limit": { "description": "Maximum number of log entries to fetch", "type": "number" } }, "required": [ "deploymentId" ], "type": "object" }

Implementation Reference

  • The handler function for the deployment_logs tool. It invokes the deployment service to retrieve the logs for the given deployment ID.
    async ({ deploymentId, limit = 100 }) => { return deploymentService.getDeploymentLogs(deploymentId, limit); }
  • Zod input schema for the tool, requiring deploymentId and optional limit.
    { deploymentId: z.string().describe("ID of the deployment to get logs for"), limit: z.number().optional().describe("Maximum number of log entries to fetch") },
  • The createTool invocation that defines, describes, and registers the deployment_logs tool into the deploymentTools export array.
    createTool( "deployment_logs", formatToolDescription({ type: 'API', description: "Get logs for a specific deployment", bestFor: [ "Debugging deployment issues", "Monitoring deployment progress", "Checking build output" ], notFor: [ "Service runtime logs", "Database logs" ], relations: { prerequisites: ["deployment_list"], nextSteps: ["deployment_status"], related: ["service_info", "deployment_trigger"] } }), { deploymentId: z.string().describe("ID of the deployment to get logs for"), limit: z.number().optional().describe("Maximum number of log entries to fetch") }, async ({ deploymentId, limit = 100 }) => { return deploymentService.getDeploymentLogs(deploymentId, limit); } ),
  • The registerAllTools function that collects all tool arrays (including deploymentTools containing deployment_logs) and registers them with the MCP server via server.tool().
    export function registerAllTools(server: McpServer) { // Collect all tools const allTools = [ ...databaseTools, ...deploymentTools, ...domainTools, ...projectTools, ...serviceTools, ...tcpProxyTools, ...variableTools, ...configTools, ...volumeTools, ...templateTools, ] as Tool[]; // Register each tool with the server allTools.forEach((tool) => { server.tool( ...tool ); }); }
  • Core helper function getDeploymentLogs in DeploymentService that fetches build and deployment logs, formats them with timestamps and emojis, and returns a success response.
    async getDeploymentLogs(deploymentId: string, limit: number = 100) { try { // Wait for 5 seconds before fetching logs // Seems like the LLMs like to call this function multiple times in combination // with the health check function, so we need to wait a bit to avoid rate limiting await new Promise(resolve => setTimeout(resolve, 5000)); const buildLogs = await this.client.deployments.getBuildLogs(deploymentId, limit); const deploymentLogs = await this.client.deployments.getDeploymentLogs(deploymentId, limit); const logs: DeploymentLog[] = [...buildLogs.map(log => ({ ...log, type: 'build' as const })), ...deploymentLogs.map(log => ({ ...log, type: 'deployment' as const })) ]; if (logs.length === 0) { return createSuccessResponse({ text: `No logs found for deployment ${deploymentId}`, data: [] }); } const formattedLogs = logs.map(log => { const timestamp = new Date(log.timestamp).toLocaleString(); const severity = log.severity.toLowerCase(); const emoji = severity === 'error' ? '❌' : severity === 'warn' ? '⚠️' : '📝'; return `[${log.type}] [${timestamp}] ${emoji} ${log.message}`; }).join('\n'); return createSuccessResponse({ text: formattedLogs, data: logs }); } catch (error) { return createErrorResponse(`Error fetching logs: ${formatError(error)}`); } }

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/jason-tan-swe/railway-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server