import React from 'react';
const Documentation = () => {
return (
<section className="documentation-section" id="documentation">
<div className="container" style={{ padding: '60px 0' }}>
<div className="section-header">
<h2>Documentation</h2>
<p>Understanding the Model Context Protocol (m4)</p>
</div>
<div className="paper-preview" style={{ marginBottom: '40px' }}>
<h3>What is the Model Context Protocol (m4)?</h3>
<p>The Model Context Protocol (m4) is a powerful framework designed to streamline interaction with large-scale databases like MIMIC. It provides a standardized, efficient, and user-friendly way for researchers to query and analyze complex healthcare data without needing to write raw SQL. By leveraging a context-aware model, m4 understands your research goals and translates natural language or simplified commands into optimized database queries.</p>
</div>
<div className="paper-preview" style={{ marginBottom: '40px' }}>
<h3>How It Works</h3>
<p>The m4 protocol operates on a simple yet powerful principle: it maintains a "context" of your current analysis. This context includes the data you've already loaded, the variables you're interested in, and the patient cohort you're studying. When you issue a new command, m4 uses this context to interpret your request and fetch the relevant data efficiently. This approach minimizes redundant data loading and dramatically speeds up iterative analysis.</p>
<ul className="explanation-features" style={{ marginTop: '20px' }}>
<li><strong>Context-Aware Queries:</strong> Remembers your previous steps to inform the next ones.</li>
<li><strong>Natural Language Processing:</strong> Allows you to write queries in plain English.</li>
<li><strong>Optimized Performance:</strong> Intelligently caches data and optimizes query execution.</li>
<li><strong>Extensible Framework:</strong> Can be adapted to other large-scale databases beyond MIMIC.</li>
</ul>
</div>
<div className="section-header">
<h3>Core Tools & Commands</h3>
<p>The m4 ecosystem includes a suite of tools to facilitate your research workflow.</p>
</div>
<div className="explanation-grid">
<div className="code-snippet" style={{ width: '100%' }}>
<span className="comment"># 1. Connect to the database</span><br/>
<span className="keyword">import</span> m4<br/>
db = m4.connect("mimic-iv")<br/><br/>
<span className="comment"># 2. Define a patient cohort</span><br/>
cohort = db.cohort.define("sepsis_patients", from_criteria="sepsis == True")<br/><br/>
<span className="comment"># 3. Load relevant data</span><br/>
vitals = cohort.load_data("vitalsigns", time_window="first_24h")<br/><br/>
<span className="comment"># 4. Run analysis</span><br/>
mean_hr = vitals.analyze("heart_rate", "mean")<br/><br/>
<span className="comment"># 5. Visualize results</span><br/>
vitals.visualize("heart_rate", "line_chart")
</div>
<div className="explanation-text">
<h3>Command-Line Interface (CLI)</h3>
<p>The m4 CLI provides a powerful set of commands to manage your data, run analyses, and interact with the MIMIC database directly from your terminal.</p>
<ul className="explanation-features">
<li><pre>m4 connect</pre> - Establishes a connection to the database.</li>
<li><pre>m4 define</pre> - Creates a new patient cohort from specific criteria.</li>
<li><pre>m4 load</pre> - Loads data for a defined cohort.</li>
<li><pre>m4 analyze</pre> - Performs statistical analysis on the loaded data.</li>
</ul>
</div>
</div>
</div>
</section>
);
};
export default Documentation;