MCP Server Replicate
by gerred
Verified
# Template Documentation
## Overview
This document provides comprehensive documentation for all templates available in the MCP Server for Replicate. Templates are organized into several categories:
1. Model Parameters
2. Common Configurations
3. Prompt Templates
## Model Parameters
### SDXL Parameters
The SDXL template provides parameters optimized for Stable Diffusion XL models.
```python
{
"prompt": "your detailed prompt",
"negative_prompt": "elements to avoid",
"width": 1024, # 512-2048, multiple of 8
"height": 1024, # 512-2048, multiple of 8
"num_inference_steps": 50, # 1-150
"guidance_scale": 7.5, # 1-20
"prompt_strength": 1.0, # 0-1
"refine": "expert_ensemble_refiner", # or "no_refiner", "base_image_refiner"
"scheduler": "K_EULER", # or "DDIM", "DPM_MULTISTEP", "PNDM", "KLMS"
"num_outputs": 1, # 1-4
"high_noise_frac": 0.8, # 0-1
"seed": null, # null or integer
"apply_watermark": true
}
```
### SD 1.5 Parameters
The SD 1.5 template provides parameters optimized for Stable Diffusion 1.5 models.
```python
{
"prompt": "your detailed prompt",
"negative_prompt": "elements to avoid",
"width": 512, # 256-1024, multiple of 8
"height": 512, # 256-1024, multiple of 8
"num_inference_steps": 50, # 1-150
"guidance_scale": 7.5, # 1-20
"scheduler": "K_EULER", # or "DDIM", "DPM_MULTISTEP", "PNDM", "KLMS"
"num_outputs": 1, # 1-4
"seed": null, # null or integer
"apply_watermark": true
}
```
### ControlNet Parameters
The ControlNet template provides parameters for controlled image generation.
```python
{
"control_image": "image_url_or_base64",
"control_mode": "balanced", # or "prompt", "control"
"control_scale": 0.9, # 0-2
"begin_control_step": 0.0, # 0-1
"end_control_step": 1.0, # 0-1
"detection_resolution": 512, # 256-1024, multiple of 8
"image_resolution": 512, # 256-1024, multiple of 8
"guess_mode": false,
"preprocessor": "canny" # or other preprocessors
}
```
## Common Configurations
### Quality Presets
Pre-configured quality settings for different use cases:
- `draft`: Fast iterations (20 steps)
- `balanced`: General use (30 steps)
- `quality`: High quality (50 steps)
- `extreme`: Maximum quality (150 steps)
### Style Presets
Pre-configured style settings:
- `photorealistic`: Highly detailed photo style
- `cinematic`: Movie-like dramatic style
- `anime`: Anime/manga style
- `digital_art`: Modern digital art style
- `oil_painting`: Classical painting style
### Aspect Ratio Presets
Common aspect ratios with optimal resolutions:
- `square`: 1:1 (1024x1024)
- `portrait`: 2:3 (832x1216)
- `landscape`: 3:2 (1216x832)
- `wide`: 16:9 (1344x768)
- `mobile`: 9:16 (768x1344)
### Negative Prompt Presets
Quality control negative prompts:
- `quality_control`: Basic quality control
- `strict_quality`: Comprehensive quality control
- `photo_quality`: Photo-specific quality control
- `artistic_quality`: Art-specific quality control
## Prompt Templates
### Text-to-Image
#### Detailed Scene Template
```
{subject} in {setting}, {lighting} lighting, {mood} atmosphere, {style} style, {details}
```
Example:
```
"a young explorer in ancient temple ruins, dramatic golden hour lighting, mysterious atmosphere, cinematic style, vines growing on weathered stone, dust particles in light beams"
```
#### Character Portrait Template
```
{gender} {character_type}, {appearance}, {clothing}, {expression}, {pose}, {style} style, {background}
```
#### Landscape Template
```
{environment} landscape, {time_of_day}, {weather}, {features}, {style} style, {mood} mood
```
### Image-to-Image
#### Style Transfer Template
```
Transform into {style} style, {quality} quality, maintain {preserve} from original
```
#### Variation Template
```
Similar to original but with {changes}, {style} style, {quality} quality
```
### ControlNet
#### Pose-Guided Template
```
{subject} in {pose_description}, {clothing}, {style} style, {background}
```
#### Depth-Guided Template
```
{subject} with {depth_elements}, {perspective}, {style} style
```
## Best Practices
1. **Parameter Selection**
- Start with preset configurations
- Adjust parameters gradually
- Use appropriate aspect ratios for your use case
2. **Prompt Engineering**
- Use detailed, specific descriptions
- Include style and quality indicators
- Use negative prompts for quality control
3. **ControlNet Usage**
- Match detection and output resolutions
- Use appropriate preprocessors for your use case
- Adjust control scale based on desired influence
4. **Quality Optimization**
- Use higher step counts for final outputs
- Adjust guidance scale for creativity vs. accuracy
- Use refiners for enhanced quality
## Version History
- v1.1.0: Added comprehensive parameter descriptions and validation
- v1.0.0: Initial release with basic parameters