# ZigNet
**MCP Server for Zig** β Intelligent code analysis, validation, and documentation powered by a fine-tuned LLM
ZigNet integrates with Claude (and other MCP-compatible LLMs) to provide real-time Zig code analysis without leaving your chat interface.
---
## π― Features
### MCP Tools
<details>
<summary><b>π analyze_zig</b> β Syntax and type checking with official Zig compiler</summary>
Analyze Zig code for syntax errors, type mismatches, and semantic issues using `zig ast-check`.
**Example usage:**
```typescript
User: "Analyze this Zig code"
Claude: [calls analyze_zig tool]
Response: "β
Syntax: Valid | Type Check: PASS | Warnings: 0"
```
**Capabilities:**
- Lexical analysis (tokenization)
- Syntax parsing (AST generation)
- Type checking and validation
- Semantic error detection
- Line/column error reporting
</details>
<details>
<summary><b>β¨ compile_zig</b> β Format and validate Zig code</summary>
Validate and format Zig code using `zig fmt`, generating clean, idiomatic output.
**Example:**
```zig
// Input (messy)
fn add(a:i32,b:i32)i32{return a+b;}
// Output (formatted)
fn add(a: i32, b: i32) i32 {
return a + b;
}
```
**Capabilities:**
- Code formatting (2-space indentation)
- Syntax validation
- Best practices enforcement
- Preserves semantics
</details>
<details>
<summary><b>π get_zig_docs</b> β AI-powered documentation lookup (coming soon)</summary>
Retrieve Zig documentation and explanations for language features using a fine-tuned LLM.
**Example:**
```typescript
Query: "comptime"
Response: "comptime enables compile-time evaluation in Zig..."
```
**Powered by:**
- Fine-tuned Qwen2.5-Coder-7B model
- 13,756 examples from Zig 0.13-0.15
- Specialized on advanced Zig idioms (comptime, generics, error handling)
</details>
<details>
<summary><b>π§ suggest_fix</b> β Intelligent error fix suggestions (coming soon)</summary>
Get intelligent code fix suggestions for Zig errors using AI-powered analysis.
**Example:**
```zig
// Error: "Type mismatch: cannot assign string to i32"
var x: i32 = "hello";
// Suggestions:
// Option 1: var x: []const u8 = "hello"; // If you meant string
// Option 2: var x: i32 = 42; // If you meant integer
```
**Features:**
- Context-aware suggestions
- Multiple fix options
- Explanation of the issue
- Zig idiom recommendations
</details>
---
## π Usage
ZigNet is an **MCP server** β configure it once in your MCP client, then use it naturally in conversation.
<details>
<summary><b>π₯οΈ Claude Desktop</b></summary>
**Configuration file location:**
- **macOS**: `~/Library/Application Support/Claude/claude_desktop_config.json`
- **Linux**: `~/.config/Claude/claude_desktop_config.json`
- **Windows**: `%APPDATA%\Claude\claude_desktop_config.json`
**Add this:**
```json
{
"mcpServers": {
"zignet": {
"command": "npx",
"args": ["-y", "zignet"]
}
}
}
```
**Then restart Claude Desktop** and start using:
```
You: "Analyze this Zig code for errors"
[paste code]
Claude: [uses analyze_zig tool]
"Found 1 type error: variable 'x' expects i32 but got []const u8"
```
</details>
<details>
<summary><b>π§ VS Code (with GitHub Copilot)</b></summary>
**Method 1: VS Code Marketplace (coming soon)**
1. Open VS Code Extensions (`Ctrl+Shift+X` / `Cmd+Shift+X`)
2. Search for `@mcp zignet`
3. Click **Install**
4. Restart VS Code
**Method 2: Manual configuration (available now)**
1. Install GitHub Copilot extension (if not already installed)
2. Open Copilot settings
3. Add to MCP servers config:
```json
{
"mcpServers": {
"zignet": {
"command": "npx",
"args": ["-y", "zignet"]
}
}
}
```
**Then restart VS Code** and Copilot will have access to ZigNet tools.
</details>
### What happens after configuration?
1. **First use**: `npx` downloads and caches ZigNet automatically
2. **Zig compiler**: Downloads on-demand (supports Zig 0.13, 0.14, 0.15)
3. **Tools available**: `analyze_zig`, `compile_zig` (+ `get_zig_docs`, `suggest_fix` coming soon)
4. **Zero maintenance**: Updates automatically via `npx -y zignet`
---
## βοΈ Configuration
### GPU Selection (Multi-GPU Systems)
If you have multiple GPUs (e.g., AMD + NVIDIA), you can control which GPU ZigNet uses via environment variables.
**Windows (PowerShell):**
```powershell
$env:ZIGNET_GPU_DEVICE="0"
npx -y zignet
```
**macOS/Linux:**
```bash
export ZIGNET_GPU_DEVICE="0"
npx -y zignet
```
**VS Code MCP Configuration with GPU selection:**
```json
{
"mcpServers": {
"zignet": {
"command": "npx",
"args": ["-y", "zignet"],
"env": {
"ZIGNET_GPU_DEVICE": "0"
}
}
}
}
```
**Claude Desktop configuration with GPU selection:**
**macOS/Linux** (`~/.config/Claude/claude_desktop_config.json`):
```json
{
"mcpServers": {
"zignet": {
"command": "npx",
"args": ["-y", "zignet"],
"env": {
"ZIGNET_GPU_DEVICE": "0"
}
}
}
}
```
**Windows** (`%APPDATA%\Claude\claude_desktop_config.json`):
```json
{
"mcpServers": {
"zignet": {
"command": "npx",
"args": ["-y", "zignet"],
"env": {
"ZIGNET_GPU_DEVICE": "0"
}
}
}
}
```
**GPU Device Values:**
- `"0"` - Use first GPU only (e.g., RTX 4090)
- `"1"` - Use second GPU only
- `"0,1"` - Use both GPUs
- Not set - Use all available GPUs (default)
**Identify your GPUs:**
```bash
# NVIDIA GPUs
nvidia-smi
# Output shows GPU indices:
# GPU 0: NVIDIA RTX 4090
# GPU 1: AMD Radeon 6950XT (won't be used by CUDA anyway)
```
### Advanced Configuration
All configuration options can be set via environment variables:
| Variable | Default | Description |
|----------|---------|-------------|
| `ZIGNET_GPU_DEVICE` | auto | GPU device selection (CUDA_VISIBLE_DEVICES) |
| `ZIGNET_GPU_LAYERS` | 35 | Number of model layers on GPU (0=CPU only) |
| `ZIGNET_MODEL_PATH` | `~/.zignet/models/...` | Custom model path |
| `ZIGNET_MODEL_AUTO_DOWNLOAD` | true | Auto-download model from HuggingFace |
| `ZIGNET_CONTEXT_SIZE` | 4096 | LLM context window size |
| `ZIGNET_TEMPERATURE` | 0.7 | LLM creativity (0.0-1.0) |
| `ZIGNET_TOP_P` | 0.9 | LLM sampling parameter |
| `ZIG_SUPPORTED` | 0.13.0,0.14.0,0.15.2 | Supported Zig versions |
| `ZIG_DEFAULT` | 0.15.2 | Default Zig version |
See [.env.example](./.env.example) for detailed examples.
---
## ποΈ Architecture
```
βββββββββββββββββββββββββββββββββββββββββββββββββββββββ
β Claude / MCP Client β
ββββββββββββββββββββββ¬βββββββββββββββββββββββββββββββββ
β MCP Protocol (JSON-RPC)
ββββββββββββββββββββββΌβββββββββββββββββββββββββββββββββ
β ZigNet MCP Server (TypeScript) β
β ββββββββββββββββββββββββββββββββββββββββββββββββ β
β β Tool Handlers β β
β β - analyze_zig β β
β β - compile_zig β β
β β - get_zig_docs β β
β β - suggest_fix β β
β βββββββββββββββ¬βββββββββββββββββββββββββββββββββ β
β βΌ β
β ββββββββββββββββββββββββββββββββββββββββββββββββ β
β β Zig Compiler Integration β β
β β - zig ast-check (syntax + type validation) β β
β β - zig fmt (official formatter) β β
β β - Auto-detects system Zig installation β β
β β - Falls back to downloading if needed β β
β βββββββββββββββ¬βββββββββββββββββββββββββββββββββ β
β βΌ β
β ββββββββββββββββββββββββββββββββββββββββββββββββ β
β β Fine-tuned LLM (Qwen2.5-Coder-7B) β β
β β - Documentation lookup β β
β β - Intelligent suggestions β β
β ββββββββββββββββββββββββββββββββββββββββββββββββ β
βββββββββββββββββββββββββββββββββββββββββββββββββββββββ
```
**Why this architecture?**
- **Official Zig compiler** (100% accurate, always up-to-date) instead of custom parser
- **System integration** (uses existing Zig installation if available)
- **LLM-powered suggestions** (get_zig_docs, suggest_fix) for intelligence
- **No external API calls** (local inference via node-llama-cpp)
- **Fast** (< 100ms for validation, < 2s for LLM suggestions)
**Note:** When Zig releases a new version (e.g., 0.16.0), ZigNet will need to re-train the LLM model on updated documentation and examples.
---
## π§ͺ Development Status
| Component | Status | Notes |
| -------------------- | ---------- | ----------------------------------- |
| Zig Compiler Wrapper | β
Complete | ast-check + fmt integration |
| System Zig Detection | β
Complete | Auto-detects installed Zig versions |
| Multi-version Cache | β
Complete | Downloads Zig 0.13-0.15 on demand |
| MCP Server | β
Complete | All 4 tools fully implemented |
| LLM Fine-tuning | β
Complete | Trained on 13,756 Zig examples |
| get_zig_docs | β
Complete | LLM-powered documentation lookup |
| suggest_fix | β
Complete | LLM-powered intelligent suggestions |
| GGUF Conversion | β
Complete | Q4_K_M quantized (4.4GB) |
| E2E Testing | β
Complete | 27/27 tests passing (8.7s) |
| Claude Integration | β³ Planned | Final deployment to Claude Desktop |
**Current Phase:** Ready for deployment - All core features complete
---
## π§ͺ Testing
### Running Tests
```bash
# Run all tests (unit + E2E)
pnpm test
# Run only E2E tests
pnpm test tests/e2e/mcp-integration.test.ts
# Run deterministic tests only (no LLM required)
SKIP_LLM_TESTS=1 pnpm test tests/e2e
# Watch mode for development
pnpm test:watch
```
### Test Coverage
**E2E Test Suite:** 27 tests covering all MCP tools
| Tool | Tests | Type | Pass Rate |
| ------------ | ----- | ------------- | --------- |
| analyze_zig | 4 | Deterministic | 100% |
| compile_zig | 3 | Deterministic | 100% |
| get_zig_docs | 5 | LLM-powered | 100% |
| suggest_fix | 5 | LLM-powered | 100% |
| Integration | 3 | Mixed | 100% |
| Performance | 3 | Stress tests | 100% |
| Edge Cases | 4 | Error paths | 100% |
**Execution time:** 8.7 seconds (without LLM model, deterministic only)
**With LLM model:** ~60-120 seconds (includes model loading + inference)
### Test Behavior
- **Deterministic tests** (12 tests): Always run, use Zig compiler directly
- **LLM tests** (15 tests): Auto-skip if model not found, graceful degradation
- **CI/CD ready**: Runs on GitHub Actions without GPU requirements
For detailed testing guide, see [tests/e2e/README.md](./tests/e2e/README.md)
---
## π¦ Project Structure
```
zignet/
βββ src/
β βββ config.ts # Environment-based configuration
β βββ mcp-server.ts # MCP protocol handler
β βββ zig/
β β βββ manager.ts # Multi-version Zig download/cache
β β βββ executor.ts # zig ast-check + fmt wrapper
β βββ llm/
β β βββ model-downloader.ts # Auto-download GGUF from HuggingFace
β β βββ session.ts # node-llama-cpp integration
β βββ tools/
β βββ analyze.ts # analyze_zig tool (COMPLETE)
β βββ compile.ts # compile_zig tool (COMPLETE)
β βββ docs.ts # get_zig_docs tool (COMPLETE)
β βββ suggest.ts # suggest_fix tool (COMPLETE)
βββ scripts/
β βββ train-qwen-standard.py # Fine-tuning script (COMPLETE)
β βββ scrape-zig-repos.js # Dataset collection
β βββ install-zig.js # Zig version installer
β βββ test-config.cjs # Config system tests
βββ data/
β βββ training/ # 13,756 examples (train/val/test)
β βββ zig-docs/ # Scraped documentation
βββ models/
β βββ zignet-qwen-7b/ # Fine-tuned model + LoRA adapters
βββ tests/
β βββ *.test.ts # Unit tests (lexer, parser, etc.)
β βββ e2e/
β βββ mcp-integration.test.ts # 27 E2E tests
β βββ README.md # Testing guide
βββ docs/
β βββ AGENTS.md # Detailed project spec
β βββ DEVELOPMENT.md # Development guide
β βββ TESTING.md # Testing documentation
βββ README.md # This file
```
---
## π€ Model Details
**Base Model:** Qwen/Qwen2.5-Coder-7B-Instruct
**Fine-tuning:** QLoRA (4-bit) on 13,756 Zig examples
**Dataset:** 97% real-world repos (Zig 0.13-0.15), 3% documentation
**Training:** RTX 3090 (24GB VRAM), 3 epochs, ~8 hours
**Output:** `fulgidus/zignet-qwen2.5-coder-7b` (HuggingFace)
**Quantization:** Q4_K_M (~4GB GGUF for node-llama-cpp)
**Why Qwen2.5-Coder-7B?**
- Best Zig syntax understanding (benchmarked vs 14 models)
- Modern idioms (comptime, generics, error handling)
- Fast inference (~15-20s per query post-quantization)
---
## π Benchmarks
| Model | Pass Rate | Avg Time | Quality | Notes |
| ------------------- | --------- | -------- | ------- | -------------------------- |
| Qwen2.5-Coder-7B | 100% | 29.58s | βββββ | **SELECTED** - Best idioms |
| DeepSeek-Coder-6.7B | 100% | 27.86s | βββββ | Didactic, verbose |
| Llama3.2-3B | 100% | 12.27s | ββββ | Good balance |
| CodeLlama-7B | 100% | 24.61s | βββ | Confuses Zig/Rust |
| Qwen2.5-Coder-0.5B | 100% | 3.94s | β | Invents syntax |
Full benchmarks: `scripts/test-results/`
---
## π οΈ Development
```bash
# Run tests
pnpm test
# Run specific component tests
pnpm test -- lexer
pnpm test -- parser
pnpm test -- type-checker
# Watch mode
pnpm test:watch
# Linting
pnpm lint
pnpm lint:fix
# Build
pnpm build
```
---
## π€ Contributing
See [AGENTS.md](./AGENTS.md) for detailed project specification and development phases.
**Current needs:**
- Testing on diverse Zig codebases
- Edge case discovery (parser/type-checker)
- Performance optimization
- Documentation improvements
---
## π License
**WTFPL v2** β Do What The Fuck You Want To Public License
---
## π Links
- **Repository:** https://github.com/fulgidus/zignet
- **Model (post-training):** https://huggingface.co/fulgidus/zignet-qwen2.5-coder-7b
- **MCP Protocol:** https://modelcontextprotocol.io
- **Zig Language:** https://ziglang.org
---
**Status:** β
Phase 4 Complete - Ready for deployment (fine-tuning complete, E2E tests passing)