# Advanced Zig Test Report
**Model**: mistral:7b
**Date**: 2025-10-26T11:44:02.261Z
**Total Tests**: 6
**Passed**: 6
**Failed**: 0
**Average Response Time**: 37.61s
## Results
### 1. Basic Zig Syntax [EASY]
**Status**: ✅ PASS
**Time**: 21.03s
**Response**:
```zig
Here is a simple Zig function in Zig that returns the sum of two integers:
```zig
const std = @import("std");
pub fn main() !void {
const a = 5;
const b = 10;
const sum = _sum(a, b);
std.io.putln!("The sum of {} and {} is {}", a, b, sum);
}
pub fn _sum(x: i32, y: i32) i32 {
return x + y;
}
```
In this example, the function `_sum` takes two `i32` integers as arguments and returns an `i32` result. The main function demonstrates how to use this sum function with some sampl
```
### 2. Memory Allocation [EASY]
**Status**: ✅ PASS
**Time**: 69.88s
**Response**:
```zig
In Zig, you can create an allocator for custom data types. Here's a simple example of an allocator for integers:
```zig
const std = @import("std");
const stdio = @import("std/stdio");
pub const MyIntAllocator = struct {
.data: *u8,
.capacity: u64,
.size: u64,
};
fn initMyIntAllocator(alloc: *std.system.Allocator) MyIntAllocator {
var result = undefined;
try @alloc.alloc(szOf<MyIntAllocator>()) with drop(result) {
result.data = alloc.asPtr();
result.capaci
```
### 3. Error Handling [MEDIUM]
**Status**: ✅ PASS
**Time**: 44.84s
**Response**:
```zig
In Zig, the `Result` type is not built-in but can be easily defined using enums and tuples. Here's an example of a custom Result type implementation:
```zig
const std = @import("std");
enum Error {
Success,
CustomError = i32, // You can define your own custom error codes here
}
pub struct Result {
kind: Error,
value: anyptr,
}
fn newResult(kind: Error, value: anyptr) Result {
var _res = try alloc(Result);
_res.kind = kind;
_res.value = value;
return _res;
}
```
### 4. Structs & Methods [MEDIUM]
**Status**: ✅ PASS
**Time**: 24.04s
**Response**:
```zig
In Zig language, here's a simple struct for a Point with `x` and `y` coordinates, and a method to calculate the distance from the origin (0, 0).
```zig
const Point = struct {
x: u64,
y: u64,
};
fn Point_distanceFromOrigin(point: const Point) u64 {
return point.x.squared() + point.y.squared();
}
```
This struct `Point` has two fields `x` and `y` of type `u64`. The function `Point_distanceFromOrigin` takes a constant Point as an argument and returns the square of the distance from
```
### 5. Generics [HARD]
**Status**: ✅ PASS
**Time**: 31.72s
**Response**:
```zig
In Zig, you can create a generic function to find the maximum of two values for various numeric types by using templates. Here's an example of how you might implement it:
```zig
pub const std = _builtin;
pub fn max(a: T, b: T) !T {
if (a > b) {
return a;
}
return b;
}
template <ty T>
struct MaxConstraint {
static constexpr bool check(type-param T) = a.compare(b) >= 0;
}
pub const fn maxTwoValues<T: MaxConstraint>(a: T, b: T) !T {
return max(a, b);
}
```
This cod
```
### 6. Comptime Magic [HARD]
**Status**: ✅ PASS
**Time**: 34.17s
**Response**:
```zig
In Zig, `comptime` is used for performing computations at compile-time. However, Zig currently doesn't support recursion at compile-time due to its design philosophy of simplicity and performance. To calculate a factorial at compile-time without recursion, we can use loops and bit manipulation techniques.
Here's an example of how you might implement a factorial function using `comptime`:
```zig
const fn comptime_factorial(n: u64) !comptime(builtin) {
if (n == 0) {
return 1;
}
```