Skip to main content
Glama

generate-user-stories

Creates detailed user stories with acceptance criteria from a product description, aiding in software development planning and requirements specification.

Instructions

Creates detailed user stories with acceptance criteria based on a product description and research.

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
productDescriptionYesDescription of the product to create user stories for

Implementation Reference

  • Main handler/executor function that performs pre-generation research using Perplexity, generates user stories via LLM with a specific system prompt, saves the markdown output to a file, and handles background job management with SSE notifications.
    export const generateUserStories: ToolExecutor = async ( params: Record<string, unknown>, config: OpenRouterConfig, context?: ToolExecutionContext ): Promise<CallToolResult> => { const sessionId = context?.sessionId || 'unknown-session'; if (sessionId === 'unknown-session') { logger.warn({ tool: 'generateUserStories' }, 'Executing tool without a valid sessionId. SSE progress updates will not be sent.'); } logger.debug({ configReceived: true, hasLlmMapping: Boolean(config.llm_mapping), mappingKeys: config.llm_mapping ? Object.keys(config.llm_mapping) : [] }, 'generateUserStories executor received config'); const productDescription = params.productDescription as string; const jobId = jobManager.createJob('generate-user-stories', params); logger.info({ jobId, tool: 'generateUserStories', sessionId }, 'Starting background job.'); const initialResponse = formatBackgroundJobInitiationResponse( jobId, 'generate-user-stories', 'User Stories Generator' ); setImmediate(async () => { const logs: string[] = []; let filePath: string = ''; try { jobManager.updateJobStatus(jobId, JobStatus.RUNNING, 'Starting user stories generation process...'); sseNotifier.sendProgress(sessionId, jobId, JobStatus.RUNNING, 'Starting user stories generation process...'); logs.push(`[${new Date().toISOString()}] Starting user stories generation for: ${productDescription.substring(0, 50)}...`); await initDirectories(context); const userStoriesDir = path.join(getBaseOutputDir(context), 'user-stories-generator'); const timestamp = new Date().toISOString().replace(/[:.]/g, '-'); const sanitizedName = productDescription.substring(0, 30).toLowerCase().replace(/[^a-z0-9]+/g, '-'); const filename = `${timestamp}-${sanitizedName}-user-stories.md`; filePath = path.join(userStoriesDir, filename); logger.info({ jobId, inputs: { productDescription: productDescription.substring(0, 50) } }, "User Stories Generator: Starting pre-generation research..."); jobManager.updateJobStatus(jobId, JobStatus.RUNNING, 'Performing pre-generation research...'); sseNotifier.sendProgress(sessionId, jobId, JobStatus.RUNNING, 'Performing pre-generation research...'); logs.push(`[${new Date().toISOString()}] Starting pre-generation research.`); let researchContext = ''; try { const query1 = `User personas and stakeholders for: ${productDescription}`; const query2 = `Common user workflows and use cases for: ${productDescription}`; const query3 = `User experience expectations and pain points for: ${productDescription}`; const researchResults = await Promise.allSettled([ performResearchQuery(query1, config), performResearchQuery(query2, config), performResearchQuery(query3, config) ]); researchContext = "## Pre-Generation Research Context (From Perplexity Sonar Deep Research):\n\n"; researchResults.forEach((result, index) => { const queryLabels = ["User Personas & Stakeholders", "User Workflows & Use Cases", "User Experience Expectations & Pain Points"]; if (result.status === "fulfilled") { researchContext += `### ${queryLabels[index]}:\n${result.value.trim()}\n\n`; } else { logger.warn({ error: result.reason }, `Research query ${index + 1} failed`); researchContext += `### ${queryLabels[index]}:\n*Research on this topic failed.*\n\n`; } }); logger.info({ jobId }, "User Stories Generator: Pre-generation research completed."); jobManager.updateJobStatus(jobId, JobStatus.RUNNING, 'Research complete. Starting main user stories generation...'); sseNotifier.sendProgress(sessionId, jobId, JobStatus.RUNNING, 'Research complete. Starting main user stories generation...'); logs.push(`[${new Date().toISOString()}] Pre-generation research completed.`); } catch (researchError) { logger.error({ jobId, err: researchError }, "User Stories Generator: Error during research aggregation"); logs.push(`[${new Date().toISOString()}] Error during research aggregation: ${researchError instanceof Error ? researchError.message : String(researchError)}`); researchContext = "## Pre-Generation Research Context:\n*Error occurred during research phase.*\n\n"; sseNotifier.sendProgress(sessionId, jobId, JobStatus.RUNNING, 'Warning: Error during research phase. Continuing generation...'); } const mainGenerationPrompt = `Create comprehensive user stories for the following product:\n\n${productDescription}\n\n${researchContext}`; logger.info({ jobId }, "User Stories Generator: Starting main generation using direct LLM call..."); jobManager.updateJobStatus(jobId, JobStatus.RUNNING, 'Generating user stories content via LLM...'); sseNotifier.sendProgress(sessionId, jobId, JobStatus.RUNNING, 'Generating user stories content via LLM...'); logs.push(`[${new Date().toISOString()}] Calling LLM for main user stories generation.`); const userStoriesMarkdown = await performFormatAwareLlmCallWithCentralizedConfig( mainGenerationPrompt, USER_STORIES_SYSTEM_PROMPT, 'user_stories_generation', 'markdown', // Explicitly specify markdown format undefined, // No schema for markdown 0.3 ); logger.info({ jobId }, "User Stories Generator: Main generation completed."); jobManager.updateJobStatus(jobId, JobStatus.RUNNING, 'Processing LLM response...'); sseNotifier.sendProgress(sessionId, jobId, JobStatus.RUNNING, 'Processing LLM response...'); logs.push(`[${new Date().toISOString()}] Received response from LLM.`); if (!userStoriesMarkdown || typeof userStoriesMarkdown !== 'string' || !userStoriesMarkdown.trim().startsWith('# User Stories:')) { logger.warn({ jobId, markdown: userStoriesMarkdown?.substring(0, 100) }, 'User stories generation returned empty or potentially invalid Markdown format.'); logs.push(`[${new Date().toISOString()}] Validation Error: LLM output invalid format.`); throw new ToolExecutionError('User stories generation returned empty or invalid Markdown content.'); } const formattedResult = `${userStoriesMarkdown}\n\n_Generated: ${new Date().toLocaleString()}_`; logger.info({ jobId }, `Saving user stories to ${filePath}...`); jobManager.updateJobStatus(jobId, JobStatus.RUNNING, `Saving user stories to file...`); sseNotifier.sendProgress(sessionId, jobId, JobStatus.RUNNING, `Saving user stories to file...`); logs.push(`[${new Date().toISOString()}] Saving user stories to ${filePath}.`); await fs.writeFile(filePath, formattedResult, 'utf8'); logger.info({ jobId }, `User stories generated and saved to ${filePath}`); logs.push(`[${new Date().toISOString()}] User stories saved successfully.`); sseNotifier.sendProgress(sessionId, jobId, JobStatus.RUNNING, `User stories saved successfully.`); const finalResult: CallToolResult = { content: [{ type: "text", text: `User stories generated successfully and saved to: ${filePath}\n\n${formattedResult}` }], isError: false }; jobManager.setJobResult(jobId, finalResult); } catch (error) { const errorMsg = error instanceof Error ? error.message : String(error); logger.error({ err: error, jobId, tool: 'generate-user-stories', params }, `User Stories Generator Error: ${errorMsg}`); logs.push(`[${new Date().toISOString()}] Error: ${errorMsg}`); let appError: AppError; const cause = error instanceof Error ? error : undefined; if (error instanceof AppError) { appError = error; } else { appError = new ToolExecutionError(`Failed to generate user stories: ${errorMsg}`, { params, filePath }, cause); } const mcpError = new McpError(ErrorCode.InternalError, appError.message, appError.context); const errorResult: CallToolResult = { content: [{ type: 'text', text: `Error during background job ${jobId}: ${mcpError.message}\n\nLogs:\n${logs.join('\n')}` }], isError: true, errorDetails: mcpError }; jobManager.setJobResult(jobId, errorResult); sseNotifier.sendProgress(sessionId, jobId, JobStatus.FAILED, `Job failed: ${mcpError.message}`); } }); return initialResponse; };
  • Zod schema defining the input parameters for the tool (productDescription).
    const userStoriesInputSchemaShape = { productDescription: z.string().min(10, { message: "Product description must be at least 10 characters." }).describe("Description of the product to create user stories for") };
  • Tool definition object and call to registerTool, which adds it to the dynamic registry used by server.ts.
    const userStoriesToolDefinition: ToolDefinition = { name: "user-stories-generator", description: "Creates detailed user stories with acceptance criteria based on a product description and research.", inputSchema: userStoriesInputSchemaShape, executor: generateUserStories }; registerTool(userStoriesToolDefinition);
  • Detailed system prompt for the LLM to generate well-structured user stories in Markdown format, incorporating research context.
    const USER_STORIES_SYSTEM_PROMPT = ` # User Stories Generator - Using Research Context # ROLE & GOAL You are an expert Agile Business Analyst and Product Owner AI assistant. Your goal is to generate a comprehensive and well-structured set of User Stories, including Epics and Acceptance Criteria, in Markdown format. # CORE TASK Generate detailed user stories based on the user's product description and the provided research context. # INPUT HANDLING - Analyze the 'productDescription' to understand the product's purpose, core features, and intended value. - You will also receive 'Pre-Generation Research Context'. # RESEARCH CONTEXT INTEGRATION - **CRITICAL:** Carefully review the '## Pre-Generation Research Context (From Perplexity Sonar Deep Research)' section provided in the user prompt. - This section contains insights on: User Personas & Stakeholders, User Workflows & Use Cases, and User Experience Expectations & Pain Points. - **Use these insights** heavily to: - Define realistic 'As a [user type/persona]' roles based on the research. - Create stories that address identified 'User Workflows & Use Cases'. - Ensure stories align with 'User Experience Expectations' and address 'Pain Points'. - Inform the 'Priority' and 'Value/Benefit' parts of the stories. - **Synthesize**, don't just list research findings. Create user stories that *embody* the research. # OUTPUT FORMAT & STRUCTURE (Strict Markdown) - Your entire response **MUST** be valid Markdown. - Start **directly** with the main title: '# User Stories: [Inferred Product Name]' - Organize stories hierarchically using Markdown headings: - \`## Epic: [Epic Title]\` (e.g., \`## Epic: User Authentication\`) - \`### User Story: [Story Title]\` (e.g., \`### User Story: User Registration\`) - For **each User Story**, use the following precise template within its \`###\` section: **ID:** US-[auto-incrementing number, e.g., US-101] **Title:** [Concise Story Title] **Story:** > As a **[User Role/Persona - informed by research]**, > I want to **[perform an action or achieve a goal]** > So that **[I gain a specific benefit - linked to user needs/pain points from research]**. **Acceptance Criteria:** * GIVEN [precondition/context] WHEN [action is performed] THEN [expected, testable outcome]. * GIVEN [another context] WHEN [different action] THEN [another outcome]. * *(Provide multiple, specific, measurable criteria)* **Priority:** [High | Medium | Low - informed by perceived value/dependencies/research] **Dependencies:** [List of User Story IDs this depends on, e.g., US-100 | None] **(Optional) Notes:** [Any clarifying details or technical considerations.] # QUALITY ATTRIBUTES - **INVEST Principles:** Ensure stories are Independent, Negotiable, Valuable, Estimable, Small (appropriately sized), and Testable (via Acceptance Criteria). - **User-Centric:** Focus on user roles, actions, and benefits, informed by research personas and needs. - **Clear Acceptance Criteria:** Criteria must be specific, unambiguous, and testable. - **Comprehensive:** Cover the core functionality implied by the description and research workflows. - **Well-Structured:** Adhere strictly to the Epic/Story hierarchy and template format. - **Consistent:** Use consistent terminology and formatting. # CONSTRAINTS (Do NOT Do the Following) - **NO Conversational Filler:** Start directly with the '# User Stories: ...' title. No intros, summaries, or closings. - **NO Markdown Violations:** Strictly adhere to the specified Markdown format (headings, blockquotes for the story, lists for AC). - **NO Implementation Details:** Focus on *what* the user needs, not *how* it will be built (unless specified in 'Notes'). - **NO External Knowledge:** Base stories *only* on the provided inputs and research context. - **NO Process Commentary:** Do not mention the research process in the output. - **Strict Formatting:** Use \`##\` for Epics, \`###\` for Stories. Use the exact field names (ID, Title, Story, Acceptance Criteria, etc.) in bold. Use Markdown blockquotes for the As a/I want/So that structure. `;

Other Tools

Related Tools

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/freshtechbro/vibe-coder-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server