Skip to main content
Glama
README.md1.53 kB
# Product MCP Server This project implements a simple **Model Context Protocol (MCP) server** using **FastMCP**, **Pydantic**, and **Uvicorn**. It exposes three tools: - **Add Product** - **Search Product** - **Get Product by ID** Products are stored in an **in-memory database**, making this ideal for demos, prototyping, or integrating with an MCP-compatible AI agent. --- ## Features - FastMCP-based MCP server - Tool functions to: - Add a new product - Search products by name or category - Retrieve product details by ID - Simple in-memory storage - Runs over HTTP using Uvicorn ## Installation ### 1. Create a virtual environment ```bash python3 -m venv venv source venv/bin/activate ``` ### 2. Install dependencies ```bash pip install -r requirements.txt ``` ## Running the Server Start the MCP server: ```bash python main.py ``` The server will start on: ```bash http://localhost:8000 ``` Available Tools ### 1. add_product Adds a new product to the in-memory catalog. Input Model (AddProductInput) ```json { "name": "Laptop", "category": "Electronics", "price": 1299.99, "stock": 5, "description": "Powerful gaming laptop" } ``` ### 2. search_product Searches for products by name or category. Input Model (SearchInput) ```json { "query": "laptop" } ``` ### 3. get_product Gets a product by its unique ID. Input Model (GetProductInput) ```json { "product_id": "uuid-here" } ``` ## MCP Client Example Run the client ```bash python client.py ```

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/fedilahbib/MCP-server-using-FastMCP'

If you have feedback or need assistance with the MCP directory API, please join our Discord server