Skip to main content
Glama

Gemini MCP

by emmron
enhanced-tools.jsโ€ข43.7 kB
import { aiClient } from '../ai/client.js'; import { storage } from '../storage/storage.js'; import { logger } from '../utils/logger.js'; import { validateString, validateObject } from '../utils/validation.js'; import { performanceMonitor } from '../utils/performance.js'; // Enhanced Tools - Superior to Zen MCP export const enhancedTools = { // 1. Enhanced Chat with Multi-Model Orchestration 'mcp__gemini__chat_plus': { description: 'Advanced collaborative AI chat with automatic model switching and context optimization', parameters: { message: { type: 'string', description: 'Message for AI conversation', required: true }, model_preference: { type: 'string', description: 'Preferred model type', default: 'auto' }, context: { type: 'string', description: 'Additional context' }, conversation_id: { type: 'string', description: 'Conversation ID for context tracking' }, enable_multi_model: { type: 'boolean', description: 'Enable multi-model collaboration', default: false } }, handler: async (args) => { const { message, model_preference = 'auto', context = '', conversation_id, enable_multi_model = false } = args; validateString(message, 'message'); const timer = performanceMonitor.startTimer('chat_plus'); // Load conversation context if available let conversationContext = ''; if (conversation_id) { const contextData = aiClient.contextManager.getContext(conversation_id); if (contextData) { conversationContext = `Previous context: ${contextData.summary}\n\n`; } } const fullPrompt = `${conversationContext}${context ? `Context: ${context}\n\n` : ''}${message}`; if (enable_multi_model) { // Multi-model collaboration const consensus = await aiClient.callConsensus(fullPrompt, ['main', 'creative', 'analysis']); const result = `๐Ÿค– **Enhanced AI Chat** (Multi-Model Collaboration) **Consensus Response:** ${consensus.consensus} **Confidence:** ${(consensus.confidence * 100).toFixed(1)}% **Individual Perspectives:** ${consensus.individual.map((r, i) => `${i + 1}. **${r.modelType}**: ${r.result.substring(0, 200)}...`).join('\n')}`; // Save conversation context if (conversation_id) { aiClient.contextManager.saveContext(conversation_id, { lastMessage: message, summary: consensus.consensus.substring(0, 500), modelTypes: consensus.individual.map(r => r.modelType) }); } timer.end(); return result; } else { // Smart single model selection const modelType = model_preference === 'auto' ? aiClient.taskComplexityAnalyzer.analyzePrompt(message) > 2 ? 'analysis' : 'main' : model_preference; const response = await aiClient.call(fullPrompt, modelType); // Save conversation context if (conversation_id) { aiClient.contextManager.saveContext(conversation_id, { lastMessage: message, summary: response.substring(0, 500), modelType }); } timer.end(); return `๐Ÿค– **Enhanced AI Chat** (${modelType}) ${response}`; } } }, // 2. Enhanced Deep Thinking with Step Validation 'mcp__gemini__thinkdeep_enhanced': { description: 'Extended AI reasoning with step validation, logical consistency checking, and progress tracking', parameters: { problem: { type: 'string', description: 'Complex problem to analyze', required: true }, thinking_depth: { type: 'string', description: 'Depth level', default: 'deep' }, validate_steps: { type: 'boolean', description: 'Enable step validation', default: true }, domain: { type: 'string', description: 'Problem domain for specialized reasoning' } }, handler: async (args) => { const { problem, thinking_depth = 'deep', validate_steps = true, domain = 'general' } = args; validateString(problem, 'problem'); const timer = performanceMonitor.startTimer('thinkdeep_enhanced'); const depthLevels = { shallow: 3, medium: 5, deep: 7, profound: 10 }; const steps = depthLevels[thinking_depth] || 7; let prompt = `As an expert in ${domain}, think deeply about this problem through ${steps} progressive steps: Problem: ${problem} Approach this systematically: 1. Problem decomposition and understanding 2. Context analysis and assumptions 3. Multiple solution approaches 4. Logical reasoning and validation 5. Potential obstacles and mitigations`; if (steps > 5) { prompt += ` 6. Alternative perspectives and counterarguments 7. Synthesis and final reasoning`; } if (steps > 7) { prompt += ` 8. Edge cases and boundary conditions 9. Implementation considerations 10. Long-term implications and consequences`; } prompt += ` For each step, provide: - Clear reasoning - Supporting evidence or logic - Potential weaknesses or gaps - Connection to previous steps ${validate_steps ? 'IMPORTANT: Validate each step before proceeding to the next.' : ''} End with a comprehensive synthesis of your deep thinking process.`; const analysis = await aiClient.call(prompt, 'analysis', { complexity: 'complex', maxTokens: 4000 }); let result = `๐Ÿง  **Enhanced Deep Thinking** (${thinking_depth} - ${steps} steps) **Domain**: ${domain} **Validation**: ${validate_steps ? 'Enabled' : 'Disabled'} ${analysis}`; // If validation is enabled, run a consistency check if (validate_steps) { const validationPrompt = `Review this deep thinking analysis for logical consistency, gaps, and potential improvements: ${analysis} Provide: 1. Logical consistency assessment (1-10 scale) 2. Identified gaps or weaknesses 3. Suggestions for improvement 4. Overall quality score`; const validation = await aiClient.call(validationPrompt, 'review'); result += ` --- ๐Ÿ” **Validation Report** ${validation}`; } timer.end(); return result; } }, // 3. Enhanced Project Planning with Templates 'mcp__gemini__planner_pro': { description: 'Interactive project planning with templates, dependency detection, and progress tracking', parameters: { project_description: { type: 'string', description: 'Project description', required: true }, project_type: { type: 'string', description: 'Project type', default: 'software' }, timeline: { type: 'string', description: 'Target timeline' }, team_size: { type: 'number', description: 'Team size', default: 1 }, complexity: { type: 'string', description: 'Project complexity', default: 'medium' } }, handler: async (args) => { const { project_description, project_type = 'software', timeline, team_size = 1, complexity = 'medium' } = args; validateString(project_description, 'project_description'); const timer = performanceMonitor.startTimer('planner_pro'); // Load project templates const templates = { software: { phases: ['Planning', 'Design', 'Development', 'Testing', 'Deployment'], standardTasks: ['Requirements gathering', 'Architecture design', 'Core development', 'Testing & QA', 'Documentation', 'Deployment setup'] }, web: { phases: ['Discovery', 'Design', 'Frontend', 'Backend', 'Integration', 'Launch'], standardTasks: ['User research', 'UI/UX design', 'Frontend development', 'Backend API', 'Database design', 'Testing', 'Launch'] }, mobile: { phases: ['Research', 'Design', 'Development', 'Testing', 'Store Submission'], standardTasks: ['Market research', 'UI design', 'Core development', 'Platform testing', 'App store optimization'] }, ai: { phases: ['Data Collection', 'Model Development', 'Training', 'Validation', 'Deployment'], standardTasks: ['Data gathering', 'Feature engineering', 'Model architecture', 'Training pipeline', 'Model validation', 'Production deployment'] } }; const template = templates[project_type] || templates.software; const planningPrompt = `Create a comprehensive project plan using the following framework: **Project**: ${project_description} **Type**: ${project_type} **Timeline**: ${timeline || 'To be determined'} **Team Size**: ${team_size} **Complexity**: ${complexity} **Template Framework**: Phases: ${template.phases.join(' โ†’ ')} Standard Tasks: ${template.standardTasks.join(', ')} Create a detailed plan including: 1. **Executive Summary** - Project goals and objectives - Success criteria - Key deliverables 2. **Phase Breakdown** - Detailed tasks for each phase - Dependencies between tasks - Resource requirements - Risk assessment 3. **Timeline & Milestones** - Estimated duration for each phase - Critical path analysis - Key milestone dates 4. **Resource Planning** - Team composition and roles - Skill requirements - External dependencies 5. **Risk Management** - Potential risks and mitigation strategies - Contingency planning - Quality gates 6. **Success Metrics** - KPIs and measurement criteria - Progress tracking methods - Review and adjustment points Make the plan actionable with specific tasks, clear dependencies, and realistic timelines for a team of ${team_size}.`; const plan = await aiClient.call(planningPrompt, 'main', { complexity: complexity === 'enterprise' ? 'complex' : 'medium', maxTokens: 4000 }); // Generate dependency analysis const dependencyPrompt = `Analyze the project plan and create a dependency matrix: ${plan} Provide: 1. Critical path identification 2. Task dependencies (what depends on what) 3. Potential bottlenecks 4. Parallel execution opportunities 5. Risk factors for delays`; const dependencies = await aiClient.call(dependencyPrompt, 'analysis'); // Save plan to storage const planData = { id: Date.now().toString(), project_description, project_type, timeline, team_size, complexity, plan, dependencies, created: new Date().toISOString(), status: 'draft' }; const storage_data = await storage.read('plans'); if (!storage_data.plans) storage_data.plans = []; storage_data.plans.push(planData); await storage.write('plans', storage_data); timer.end(); return `๐Ÿ“‹ **Enhanced Project Plan** (${project_type}) **Plan ID**: ${planData.id} **Complexity**: ${complexity} **Team Size**: ${team_size} ${plan} --- ๐Ÿ”— **Dependency Analysis** ${dependencies} **Plan saved to storage for future reference and tracking.**`; } }, // 4. Enhanced Consensus with Weighted Voting 'mcp__gemini__consensus_advanced': { description: 'Advanced multi-model consensus with weighted voting, confidence scoring, and conflict resolution', parameters: { question: { type: 'string', description: 'Question for consensus', required: true }, models: { type: 'array', description: 'Models to consult', default: ['main', 'analysis', 'review'] }, weight_strategy: { type: 'string', description: 'Weighting strategy', default: 'performance' }, min_confidence: { type: 'number', description: 'Minimum confidence threshold', default: 0.7 } }, handler: async (args) => { const { question, models = ['main', 'analysis', 'review'], weight_strategy = 'performance', min_confidence = 0.7 } = args; validateString(question, 'question'); const timer = performanceMonitor.startTimer('consensus_advanced'); // Enhanced prompt for better consensus const consensusPrompt = `${question} Please provide your response with: 1. Your main answer/recommendation 2. Confidence level (0-1 scale) 3. Key reasoning points 4. Potential limitations or uncertainties 5. Alternative viewpoints to consider Be thorough but concise.`; // Get responses from multiple models const responses = await aiClient.callMultiModel(consensusPrompt, models); const validResponses = responses.filter(r => r.success); if (validResponses.length === 0) { throw new Error('No models provided valid responses for consensus'); } // Calculate weights based on strategy const weights = this.calculateModelWeights(validResponses, weight_strategy); // Analyze responses for consensus const consensusAnalysisPrompt = `Analyze these expert responses and create a weighted consensus: ${validResponses.map((r, i) => `**Expert ${i + 1} (${r.modelType}, weight: ${weights[i].toFixed(2)})**: ${r.result} ---`).join('\n')} Create a consensus that: 1. Synthesizes the best insights from all responses 2. Weights perspectives based on provided weights 3. Identifies areas of agreement and disagreement 4. Provides a confidence score for the final consensus 5. Notes any significant concerns or limitations Format as a comprehensive consensus response.`; const consensus = await aiClient.call(consensusAnalysisPrompt, 'analysis', { maxTokens: 3000 }); // Calculate overall confidence const overallConfidence = this.calculateOverallConfidence(validResponses, weights); timer.end(); return `๐Ÿค **Advanced Consensus Analysis** **Question**: ${question} **Models Consulted**: ${models.join(', ')} **Successful Responses**: ${validResponses.length}/${models.length} **Weighting Strategy**: ${weight_strategy} **Overall Confidence**: ${(overallConfidence * 100).toFixed(1)}% ${overallConfidence < min_confidence ? 'โš ๏ธ **Warning**: Consensus confidence below threshold' : 'โœ… **High Confidence**: Consensus meets reliability standards'} --- **Weighted Consensus**: ${consensus} --- **Individual Response Summary**: ${validResponses.map((r, i) => `โ€ข **${r.modelType}** (weight: ${weights[i].toFixed(2)}): ${r.result.substring(0, 150)}...`).join('\n')}`; }, // Helper methods calculateModelWeights(responses, strategy) { switch (strategy) { case 'equal': return responses.map(() => 1 / responses.length); case 'performance': // Get model performance from aiClient const performanceScores = responses.map(r => { const health = aiClient.modelHealth.get(r.modelType); return health?.successRate || 0.8; }); const total = performanceScores.reduce((a, b) => a + b, 0); return performanceScores.map(score => score / total); case 'complexity': // Weight based on response complexity/length const complexityScores = responses.map(r => Math.min(r.result.length / 1000, 2)); const complexityTotal = complexityScores.reduce((a, b) => a + b, 0); return complexityScores.map(score => score / complexityTotal); default: return responses.map(() => 1 / responses.length); } }, calculateOverallConfidence(responses, weights) { // Extract confidence scores from responses (simplified) const confidenceScores = responses.map(r => { const match = r.result.match(/confidence.*?(\d+(?:\.\d+)?)/i); return match ? parseFloat(match[1]) : 0.8; }); // Weighted average return confidenceScores.reduce((sum, confidence, i) => sum + confidence * weights[i], 0); } }, // 5. Enhanced Code Review with Multi-Perspective Analysis 'mcp__gemini__codereview_expert': { description: 'Multi-perspective code review with actionable fixes, risk scoring, and automated suggestions', parameters: { code: { type: 'string', description: 'Code to review', required: true }, language: { type: 'string', description: 'Programming language', default: 'javascript' }, review_focus: { type: 'array', description: 'Focus areas', default: ['security', 'performance', 'maintainability'] }, context: { type: 'string', description: 'Code context or description' }, generate_fixes: { type: 'boolean', description: 'Generate automated fix suggestions', default: true } }, handler: async (args) => { const { code, language = 'javascript', review_focus = ['security', 'performance', 'maintainability'], context = '', generate_fixes = true } = args; validateString(code, 'code', 20000); const timer = performanceMonitor.startTimer('codereview_expert'); const focusAreas = Array.isArray(review_focus) ? review_focus : [review_focus]; // Multi-perspective review const reviewPrompts = { security: `Security Review - Focus on vulnerabilities, injection risks, authentication, authorization, data validation:`, performance: `Performance Review - Focus on efficiency, optimization opportunities, resource usage, algorithms:`, maintainability: `Maintainability Review - Focus on code clarity, structure, documentation, technical debt:`, architecture: `Architecture Review - Focus on design patterns, separation of concerns, scalability:`, testing: `Testing Review - Focus on testability, coverage opportunities, test quality:` }; const reviews = {}; for (const focus of focusAreas) { if (reviewPrompts[focus]) { const reviewPrompt = `${reviewPrompts[focus]} ${context ? `Context: ${context}\n\n` : ''}Code to review: \`\`\`${language} ${code} \`\`\` Provide: 1. Overall ${focus} assessment (1-10 scale) 2. Specific issues found with line references 3. Risk level for each issue (Critical/High/Medium/Low) 4. ${generate_fixes ? 'Suggested fixes with code examples' : 'Improvement recommendations'} 5. Best practices violations 6. Positive aspects worth noting Be thorough and specific.`; reviews[focus] = await aiClient.call(reviewPrompt, 'review'); } } // Generate comprehensive summary const summaryPrompt = `Create a comprehensive code review summary from these expert reviews: ${Object.entries(reviews).map(([focus, review]) => `**${focus.toUpperCase()} REVIEW:**\n${review}\n\n---\n`).join('')} Provide: 1. **Executive Summary** with overall quality score (1-10) 2. **Critical Issues** requiring immediate attention 3. **Risk Assessment** with prioritized action items 4. **Quality Metrics** breakdown by category 5. **Improvement Roadmap** with suggested order of fixes 6. **Compliance Check** against ${language} best practices ${generate_fixes ? 'Include specific code examples for top 3 fixes.' : ''}`; const summary = await aiClient.call(summaryPrompt, 'analysis', { maxTokens: 3000 }); timer.end(); return `๐Ÿ” **Expert Code Review** (${language}) **Focus Areas**: ${focusAreas.join(', ')} **Auto-fixes**: ${generate_fixes ? 'Enabled' : 'Disabled'} ${summary} --- **Detailed Reviews by Focus Area:** ${Object.entries(reviews).map(([focus, review]) => `### ${focus.toUpperCase()} ${review}`).join('\n\n---\n\n')}`; } }, // 6. Enhanced Debug Master with Execution Simulation 'mcp__gemini__debug_master': { description: 'Advanced debugging with execution simulation, fix validation, and step-by-step analysis', parameters: { error_message: { type: 'string', description: 'Error message or description', required: true }, code: { type: 'string', description: 'Code where error occurs' }, stack_trace: { type: 'string', description: 'Stack trace if available' }, context: { type: 'string', description: 'Additional context' }, language: { type: 'string', description: 'Programming language', default: 'javascript' }, simulate_execution: { type: 'boolean', description: 'Enable execution simulation', default: true } }, handler: async (args) => { const { error_message, code, stack_trace, context = '', language = 'javascript', simulate_execution = true } = args; validateString(error_message, 'error_message'); const timer = performanceMonitor.startTimer('debug_master'); let debugPrompt = `Advanced debugging analysis for ${language} error: **Error**: ${error_message} ${stack_trace ? `**Stack Trace**:\n\`\`\`\n${stack_trace}\n\`\`\`\n` : ''} ${code ? `**Code Context**:\n\`\`\`${language}\n${code}\n\`\`\`\n` : ''} ${context ? `**Additional Context**: ${context}\n` : ''} Provide comprehensive debugging analysis: 1. **Root Cause Analysis** - Primary cause identification - Contributing factors - Error propagation path 2. **Code Flow Analysis** - Execution path leading to error - Variable states at error point - Control flow issues 3. **Debugging Strategy** - Step-by-step debugging approach - Key checkpoints to examine - Data points to verify 4. **Fix Solutions** - Primary fix with code example - Alternative approaches - Prevention strategies 5. **Testing Validation** - How to verify the fix - Edge cases to test - Regression testing points Be specific and actionable.`; const analysis = await aiClient.call(debugPrompt, 'debug', { maxTokens: 3000 }); let result = `๐Ÿ› **Debug Master Analysis** (${language}) ${analysis}`; // Execution simulation if enabled and code is provided if (simulate_execution && code) { const simulationPrompt = `Simulate the execution of this code step by step: \`\`\`${language} ${code} \`\`\` Error: ${error_message} Provide: 1. **Step-by-step execution trace** - Line-by-line execution flow - Variable values at each step - Function calls and returns 2. **Error Point Analysis** - Exact line where error occurs - Variable states at error - Memory/scope situation 3. **Execution Scenarios** - Normal execution path - Error-triggering scenario - Edge case behaviors 4. **State Verification** - Expected vs actual values - Assumption violations - Boundary condition issues Format as a detailed execution trace.`; const simulation = await aiClient.call(simulationPrompt, 'analysis'); result += ` --- ๐Ÿ”„ **Execution Simulation** ${simulation}`; } // Generate fix validation if (code) { const validationPrompt = `Based on the debugging analysis, validate potential fixes: Original Code: \`\`\`${language} ${code} \`\`\` Error: ${error_message} Provide: 1. **Fix Validation Checklist** - Critical points to verify - Test cases to validate - Edge conditions to check 2. **Regression Risk Assessment** - Areas that might be affected - Side effects to monitor - Backward compatibility concerns 3. **Monitoring Recommendations** - What to watch after deployment - Logging improvements - Alert configurations`; const validation = await aiClient.call(validationPrompt, 'review'); result += ` --- โœ… **Fix Validation Guide** ${validation}`; } timer.end(); return result; } }, // 7. Enhanced Analysis Intelligence 'mcp__gemini__analyze_intelligence': { description: 'Deep code analysis with performance prediction, business impact assessment, and trend analysis', parameters: { target: { type: 'string', description: 'Code/project to analyze', required: true }, analysis_type: { type: 'string', description: 'Analysis type', default: 'comprehensive' }, include_business_impact: { type: 'boolean', description: 'Include business impact analysis', default: true }, performance_prediction: { type: 'boolean', description: 'Enable performance prediction', default: true }, generate_metrics: { type: 'boolean', description: 'Generate quality metrics', default: true } }, handler: async (args) => { const { target, analysis_type = 'comprehensive', include_business_impact = true, performance_prediction = true, generate_metrics = true } = args; validateString(target, 'target'); const timer = performanceMonitor.startTimer('analyze_intelligence'); // Multi-layered analysis const analysisPrompt = `Perform ${analysis_type} intelligence analysis: Target: ${target} Provide comprehensive analysis covering: 1. **Architecture Assessment** - Design patterns and principles - Structural quality and organization - Scalability considerations - Technology stack evaluation 2. **Code Quality Analysis** - Maintainability index - Complexity metrics - Technical debt assessment - Best practices compliance 3. **Security Posture** - Vulnerability assessment - Security pattern usage - Risk exposure areas - Compliance readiness ${performance_prediction ? `4. **Performance Intelligence** - Performance bottleneck prediction - Scalability limits - Resource utilization patterns - Optimization opportunities` : ''} ${generate_metrics ? `5. **Quality Metrics** - Quantitative quality scores - Trend analysis - Benchmark comparisons - Improvement vectors` : ''} Be specific with actionable insights and recommendations.`; const coreAnalysis = await aiClient.call(analysisPrompt, 'analysis', { complexity: 'complex', maxTokens: 4000 }); let result = `๐Ÿ“Š **Intelligence Analysis** (${analysis_type}) ${coreAnalysis}`; // Business impact analysis if (include_business_impact) { const businessPrompt = `Analyze business impact for this technical assessment: ${coreAnalysis} Provide: 1. **Financial Impact** - Development cost implications - Maintenance cost projections - Risk mitigation costs - ROI of improvements 2. **Operational Impact** - Performance implications - Reliability considerations - Scalability requirements - Support overhead 3. **Strategic Considerations** - Technology advancement alignment - Competitive positioning - Future-proofing assessment - Innovation opportunities 4. **Executive Summary** - Key business risks - Investment priorities - Timeline recommendations - Success metrics Quantify impacts where possible with dollar estimates and timelines.`; const businessAnalysis = await aiClient.call(businessPrompt, 'analysis'); result += ` --- ๐Ÿ’ผ **Business Impact Analysis** ${businessAnalysis}`; } // Performance prediction if (performance_prediction) { const performancePrompt = `Create performance prediction model based on analysis: ${coreAnalysis} Predict: 1. **Performance Bottlenecks** - Current performance issues - Future scalability limits - Resource constraints 2. **Load Scenarios** - Expected performance under load - Breaking points - Degradation patterns 3. **Optimization Impact** - Potential improvements - Implementation effort vs gain - Performance ROI 4. **Monitoring Strategy** - Key performance indicators - Early warning signals - Optimization triggers Provide specific metrics and thresholds.`; const performancePrediction = await aiClient.call(performancePrompt, 'analysis'); result += ` --- ๐Ÿš€ **Performance Prediction Model** ${performancePrediction}`; } // Save analysis to storage for trend tracking if (generate_metrics) { const analysisData = { id: Date.now().toString(), target, analysis_type, timestamp: new Date().toISOString(), analysis: coreAnalysis, business_impact: include_business_impact, performance_prediction: performance_prediction }; const storageData = await storage.read('analyses'); if (!storageData.analyses) storageData.analyses = []; storageData.analyses.push(analysisData); // Keep only last 100 analyses if (storageData.analyses.length > 100) { storageData.analyses = storageData.analyses.slice(-100); } await storage.write('analyses', storageData); result += ` **Analysis ID**: ${analysisData.id} (saved for trend tracking)`; } timer.end(); return result; } }, // 8. Enhanced Refactor Genius with Safety Guarantees 'mcp__gemini__refactor_genius': { description: 'Intelligent code refactoring with automated testing, rollback capabilities, and safety validation', parameters: { code: { type: 'string', description: 'Code to refactor', required: true }, language: { type: 'string', description: 'Programming language', default: 'javascript' }, refactor_goals: { type: 'array', description: 'Refactoring goals', default: ['readability', 'maintainability', 'performance'] }, safety_level: { type: 'string', description: 'Safety level', default: 'high' }, generate_tests: { type: 'boolean', description: 'Generate test cases', default: true }, rollback_plan: { type: 'boolean', description: 'Create rollback plan', default: true } }, handler: async (args) => { const { code, language = 'javascript', refactor_goals = ['readability', 'maintainability', 'performance'], safety_level = 'high', generate_tests = true, rollback_plan = true } = args; validateString(code, 'code', 15000); const timer = performanceMonitor.startTimer('refactor_genius'); const goals = Array.isArray(refactor_goals) ? refactor_goals : [refactor_goals]; // Safety analysis first const safetyPrompt = `Analyze this ${language} code for refactoring safety: \`\`\`${language} ${code} \`\`\` Assess: 1. **Refactoring Safety Score** (1-10, where 10 is safest) 2. **Risk Factors** that could break functionality 3. **Critical Dependencies** that must be preserved 4. **External Interfaces** that cannot change 5. **Hidden Coupling** that might be affected 6. **Complexity Hotspots** requiring careful handling Safety Level Required: ${safety_level} Provide safety assessment and recommendations.`; const safetyAnalysis = await aiClient.call(safetyPrompt, 'review'); // Main refactoring analysis const refactorPrompt = `Perform intelligent refactoring for this ${language} code: \`\`\`${language} ${code} \`\`\` **Goals**: ${goals.join(', ')} **Safety Level**: ${safety_level} Provide: 1. **Refactoring Plan** - Step-by-step refactoring approach - Order of operations for safety - Risk mitigation at each step 2. **Refactored Code** - Complete refactored implementation - Preserve all functionality - Maintain external interfaces 3. **Improvement Analysis** - Before/after comparison - Quantified improvements - Goal achievement assessment 4. **Change Summary** - What was changed and why - Performance implications - Maintainability improvements ${safety_level === 'high' ? 'Apply conservative refactoring with maximum safety guarantees.' : ''}`; const refactorAnalysis = await aiClient.call(refactorPrompt, 'coding', { complexity: 'complex', maxTokens: 4000 }); let result = `โ™ป๏ธ **Refactor Genius** (${language}) **Goals**: ${goals.join(', ')} **Safety Level**: ${safety_level} --- ๐Ÿ›ก๏ธ **Safety Analysis** ${safetyAnalysis} --- ๐Ÿ”ง **Refactoring Implementation** ${refactorAnalysis}`; // Generate test cases if requested if (generate_tests) { const testPrompt = `Generate comprehensive test cases for this refactoring: **Original Code:** \`\`\`${language} ${code} \`\`\` **Refactored Code:** (from analysis above) Create: 1. **Unit Tests** for individual functions/methods 2. **Integration Tests** for component interactions 3. **Regression Tests** to ensure no functionality breaks 4. **Performance Tests** to validate improvements 5. **Edge Case Tests** for boundary conditions Use appropriate testing framework for ${language}. Focus on verifying that refactored code behaves identically to original.`; const testCases = await aiClient.call(testPrompt, 'testing'); result += ` --- ๐Ÿงช **Test Suite** ${testCases}`; } // Create rollback plan if requested if (rollback_plan) { const rollbackPrompt = `Create a rollback plan for this refactoring: **Original Code:** \`\`\`${language} ${code} \`\`\` Provide: 1. **Rollback Strategy** - Step-by-step rollback process - Recovery checkpoints - Validation steps 2. **Risk Mitigation** - What could go wrong - Early warning signs - Emergency procedures 3. **Monitoring Plan** - Key metrics to watch - Performance indicators - Alert thresholds 4. **Backup Recommendations** - What to backup before refactoring - Version control strategy - Documentation requirements`; const rollbackStrategy = await aiClient.call(rollbackPrompt, 'analysis'); result += ` --- ๐Ÿ”„ **Rollback Plan** ${rollbackStrategy}`; } timer.end(); return result; } }, // 9. Enhanced Pre-commit Guardian 'mcp__gemini__precommit_guardian': { description: 'Advanced pre-commit validation with auto-fix suggestions and Git integration', parameters: { changes: { type: 'string', description: 'Code changes to validate', required: true }, check_types: { type: 'array', description: 'Check types', default: ['quality', 'security', 'performance'] }, auto_fix: { type: 'boolean', description: 'Generate auto-fix suggestions', default: true }, block_on_issues: { type: 'boolean', description: 'Block commit on critical issues', default: true }, language: { type: 'string', description: 'Programming language', default: 'javascript' } }, handler: async (args) => { const { changes, check_types = ['quality', 'security', 'performance'], auto_fix = true, block_on_issues = true, language = 'javascript' } = args; validateString(changes, 'changes'); const timer = performanceMonitor.startTimer('precommit_guardian'); const checks = Array.isArray(check_types) ? check_types : [check_types]; // Pre-commit validation const validationPrompt = `Perform pre-commit validation for these ${language} changes: \`\`\`${language} ${changes} \`\`\` **Validation Types**: ${checks.join(', ')} Analyze: 1. **Critical Issues** (commit blockers) - Security vulnerabilities - Syntax errors - Breaking changes - Performance regressions 2. **Quality Issues** (warnings) - Code style violations - Best practice deviations - Documentation gaps - Test coverage concerns 3. **Performance Impact** - Performance implications - Resource usage changes - Scalability considerations 4. **Security Review** - Security pattern violations - Vulnerability introductions - Access control issues ${auto_fix ? '5. **Auto-fix Suggestions**\n - Automated fixes for common issues\n - Code style corrections\n - Performance optimizations' : ''} Provide: - โœ… PASS / โŒ FAIL / โš ๏ธ WARNING for each category - Specific line numbers for issues - ${block_on_issues ? 'Clear indication if commit should be blocked' : 'Advisory feedback'} - Remediation steps`; const validation = await aiClient.call(validationPrompt, 'review', { complexity: 'medium', maxTokens: 3000 }); // Extract commit decision const criticalIssues = validation.toLowerCase().includes('โŒ fail') || validation.toLowerCase().includes('critical'); const commitStatus = block_on_issues && criticalIssues ? 'BLOCKED' : 'APPROVED'; let result = `๐Ÿ›ก๏ธ **Pre-commit Guardian** (${language}) **Status**: ${commitStatus === 'BLOCKED' ? '๐Ÿšซ COMMIT BLOCKED' : 'โœ… COMMIT APPROVED'} **Checks**: ${checks.join(', ')} **Auto-fix**: ${auto_fix ? 'Enabled' : 'Disabled'} ${validation}`; // Generate Git hook integration if requested const gitHookPrompt = `Generate Git pre-commit hook integration: Validation Status: ${commitStatus} Issues Found: ${criticalIssues} Provide: 1. **Git Hook Script** (bash/shell) - Pre-commit hook implementation - Integration with validation - Error handling and reporting 2. **Installation Instructions** - How to install the hook - Configuration options - Troubleshooting guide 3. **Workflow Integration** - CI/CD integration points - Team collaboration setup - Override procedures for emergencies`; const gitIntegration = await aiClient.call(gitHookPrompt, 'devops'); result += ` --- ๐Ÿ”— **Git Integration** ${gitIntegration}`; // Store validation results for metrics const validationData = { timestamp: new Date().toISOString(), language, status: commitStatus, checks: checks, critical_issues: criticalIssues, changes_size: changes.length }; const storageData = await storage.read('validations'); if (!storageData.validations) storageData.validations = []; storageData.validations.push(validationData); // Keep only last 500 validations if (storageData.validations.length > 500) { storageData.validations = storageData.validations.slice(-500); } await storage.write('validations', storageData); timer.end(); return result; } }, // 10. Enhanced Security Audit with Quantum Analysis 'mcp__gemini__secaudit_quantum': { description: 'Advanced security audit with vulnerability prediction, compliance checking, and quantum-readiness assessment', parameters: { target: { type: 'string', description: 'Code/system to audit', required: true }, audit_depth: { type: 'string', description: 'Audit depth', default: 'comprehensive' }, compliance_standards: { type: 'array', description: 'Compliance standards', default: ['OWASP', 'SOC2'] }, include_quantum: { type: 'boolean', description: 'Include quantum vulnerability assessment', default: true }, threat_modeling: { type: 'boolean', description: 'Enable threat modeling', default: true } }, handler: async (args) => { const { target, audit_depth = 'comprehensive', compliance_standards = ['OWASP', 'SOC2'], include_quantum = true, threat_modeling = true } = args; validateString(target, 'target'); const timer = performanceMonitor.startTimer('secaudit_quantum'); const standards = Array.isArray(compliance_standards) ? compliance_standards : [compliance_standards]; // Core security audit const auditPrompt = `Perform ${audit_depth} security audit: Target: ${target} **Compliance Standards**: ${standards.join(', ')} Conduct thorough security analysis: 1. **Vulnerability Assessment** - Input validation vulnerabilities - Authentication/authorization flaws - Injection attack vectors - Data exposure risks - Configuration security issues 2. **Security Architecture Review** - Security pattern implementation - Defense-in-depth analysis - Attack surface assessment - Trust boundary evaluation 3. **Compliance Evaluation** - ${standards.join(' compliance\n - ')} compliance - Regulatory requirement gaps - Policy adherence assessment 4. **Risk Scoring** - Vulnerability severity (CVSS) - Exploit probability - Business impact assessment - Risk prioritization matrix ${threat_modeling ? `5. **Threat Modeling** - Attack tree analysis - Threat actor profiling - Attack vector identification - Mitigation effectiveness` : ''} Provide specific findings with: - CVE references where applicable - Proof-of-concept examples - Remediation steps with code examples - Timeline for fixes (Critical/High/Medium/Low)`; const coreAudit = await aiClient.call(auditPrompt, 'security', { complexity: 'complex', maxTokens: 4000 }); let result = `๐Ÿ”’ **Quantum Security Audit** (${audit_depth}) **Compliance**: ${standards.join(', ')} **Quantum Analysis**: ${include_quantum ? 'Enabled' : 'Disabled'} **Threat Modeling**: ${threat_modeling ? 'Enabled' : 'Disabled'} ${coreAudit}`; // Quantum vulnerability assessment if (include_quantum) { const quantumPrompt = `Assess quantum computing security implications: Target: ${target} Analyze: 1. **Quantum Vulnerability Assessment** - Current cryptographic implementations - Quantum-vulnerable algorithms (RSA, ECDSA, DSA) - Post-quantum readiness score 2. **Cryptographic Inventory** - Encryption algorithms in use - Key management practices - Certificate authority dependencies - Random number generation 3. **Quantum-Safe Migration Plan** - NIST post-quantum standards compliance - Migration timeline and priorities - Hybrid transition strategies - Cost-benefit analysis 4. **Future-Proofing Recommendations** - Quantum-resistant algorithms (CRYSTALS-Kyber, SPHINCS+, FALCON) - Implementation roadmap - Backward compatibility considerations - Performance impact assessment Provide specific recommendations for quantum readiness.`; const quantumAnalysis = await aiClient.call(quantumPrompt, 'security'); result += ` --- ๐Ÿ”ฎ **Quantum Vulnerability Analysis** ${quantumAnalysis}`; } // Generate executive security report const executivePrompt = `Create executive security summary: Based on security audit findings: ${coreAudit} ${include_quantum ? `Quantum Analysis: ${quantumAnalysis}` : ''} Provide: 1. **Executive Summary** - Overall security posture (1-10 scale) - Critical risk summary - Immediate action items 2. **Business Impact Analysis** - Financial risk assessment - Compliance exposure - Reputation impact - Operational disruption potential 3. **Investment Priorities** - Security improvement ROI - Resource allocation recommendations - Timeline for critical fixes - Budget requirements 4. **Strategic Recommendations** - Long-term security roadmap - Technology modernization needs - Team capability requirements - Governance improvements Format for C-suite consumption with clear business language.`; const executiveSummary = await aiClient.call(executivePrompt, 'analysis'); result += ` --- ๐Ÿ“Š **Executive Security Report** ${executiveSummary}`; // Save audit results const auditData = { id: Date.now().toString(), target, audit_depth, compliance_standards: standards, include_quantum, threat_modeling, timestamp: new Date().toISOString(), findings: coreAudit.substring(0, 1000) // Store summary only }; const storageData = await storage.read('security_audits'); if (!storageData.audits) storageData.audits = []; storageData.audits.push(auditData); // Keep only last 50 audits if (storageData.audits.length > 50) { storageData.audits = storageData.audits.slice(-50); } await storage.write('security_audits', storageData); result += ` **Audit ID**: ${auditData.id} (saved for compliance tracking)`; timer.end(); return result; } } };

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/emmron/gemini-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server