Skip to main content
Glama

Gemini MCP

by emmron
business-tools.js•17.1 kB
import { aiClient } from '../ai/client.js'; import { storage } from '../storage/storage.js'; import { logger } from '../utils/logger.js'; import { validateString } from '../utils/validation.js'; import { performanceMonitor } from '../utils/performance.js'; // Business Intelligence Tools - Unique Superiority Features export const businessTools = { // Financial Impact Analysis Tool 'mcp__gemini__financial_impact': { description: 'ROI analysis and cost-benefit calculations for technical decisions with business impact quantification', parameters: { decision: { type: 'string', description: 'Technical decision to analyze', required: true }, context: { type: 'string', description: 'Business context and constraints' }, timeline: { type: 'string', description: 'Implementation timeline', default: '6 months' }, team_size: { type: 'number', description: 'Team size for implementation', default: 5 }, risk_tolerance: { type: 'string', description: 'Risk tolerance level', default: 'medium' } }, handler: async (args) => { const { decision, context = '', timeline = '6 months', team_size = 5, risk_tolerance = 'medium' } = args; validateString(decision, 'decision'); const timer = performanceMonitor.startTimer('financial_impact'); const analysisPrompt = `Perform comprehensive financial impact analysis for this technical decision: **Decision**: ${decision} **Context**: ${context} **Timeline**: ${timeline} **Team Size**: ${team_size} **Risk Tolerance**: ${risk_tolerance} Provide detailed financial analysis: 1. **Cost Analysis** - Development costs (labor, tools, infrastructure) - Implementation costs (deployment, training, migration) - Ongoing operational costs (maintenance, support, updates) - Hidden costs (integration, testing, documentation) 2. **Benefit Analysis** - Performance improvements (quantified value) - Developer productivity gains - Maintenance cost reductions - Risk mitigation value - Competitive advantages 3. **ROI Calculation** - Total Cost of Ownership (TCO) over 3 years - Expected return on investment - Payback period calculation - Net present value (NPV) analysis 4. **Risk Assessment** - Financial risks and mitigation costs - Probability-weighted scenarios - Worst-case financial impact - Risk-adjusted ROI 5. **Decision Framework** - Go/No-go recommendation with reasoning - Alternative options analysis - Phased implementation strategy - Success metrics and KPIs Provide specific dollar amounts where possible and explain assumptions.`; const financialAnalysis = await aiClient.call(analysisPrompt, 'analysis', { complexity: 'complex', maxTokens: 4000 }); // Generate executive summary const executivePrompt = `Create an executive summary for C-suite consumption: ${financialAnalysis} Format as executive briefing with: 1. **Investment Summary** (one paragraph) 2. **Key Financial Metrics** (ROI, Payback, NPV) 3. **Strategic Recommendation** (Proceed/Pause/Pivot) 4. **Risk Mitigation** (top 3 risks and solutions) 5. **Success Measures** (how to track ROI) Use business language, avoid technical jargon.`; const executiveSummary = await aiClient.call(executivePrompt, 'analysis'); // Save financial analysis for tracking const analysisData = { id: Date.now().toString(), decision, context, timeline, team_size, risk_tolerance, timestamp: new Date().toISOString(), analysis: financialAnalysis, executive_summary: executiveSummary }; const storageData = await storage.read('financial_analyses'); if (!storageData.analyses) storageData.analyses = []; storageData.analyses.push(analysisData); // Keep only last 100 analyses if (storageData.analyses.length > 100) { storageData.analyses = storageData.analyses.slice(-100); } await storage.write('financial_analyses', storageData); timer.end(); return `šŸ’° **Financial Impact Analysis** **Decision**: ${decision} **Timeline**: ${timeline} | **Team**: ${team_size} people | **Risk Tolerance**: ${risk_tolerance} --- šŸ“Š **Executive Summary** ${executiveSummary} --- šŸ“ˆ **Detailed Financial Analysis** ${financialAnalysis} **Analysis ID**: ${analysisData.id} (saved for portfolio tracking)`; } }, // Performance Predictor Tool 'mcp__gemini__performance_predictor': { description: 'AI-powered performance prediction and optimization recommendations with capacity planning', parameters: { system: { type: 'string', description: 'System or code to analyze', required: true }, load_scenarios: { type: 'array', description: 'Load scenarios to predict', default: ['current', '2x', '10x'] }, metrics: { type: 'array', description: 'Performance metrics to predict', default: ['response_time', 'throughput', 'resource_usage'] }, prediction_horizon: { type: 'string', description: 'Prediction timeframe', default: '12 months' } }, handler: async (args) => { const { system, load_scenarios = ['current', '2x', '10x'], metrics = ['response_time', 'throughput', 'resource_usage'], prediction_horizon = '12 months' } = args; validateString(system, 'system'); const timer = performanceMonitor.startTimer('performance_predictor'); const predictionPrompt = `Create AI-powered performance prediction model: **System**: ${system} **Load Scenarios**: ${load_scenarios.join(', ')} **Metrics**: ${metrics.join(', ')} **Prediction Horizon**: ${prediction_horizon} Analyze and predict: 1. **Current Performance Baseline** - Current performance characteristics - Resource utilization patterns - Bottleneck identification - Scalability limits 2. **Performance Predictions by Load** ${load_scenarios.map(scenario => `- **${scenario} Load**: Predicted performance metrics and breaking points`).join('\n ')} 3. **Capacity Planning** - Resource requirements for each scenario - Infrastructure scaling recommendations - Cost implications of scaling - Optimal scaling thresholds 4. **Performance Optimization Roadmap** - Priority optimization opportunities - Expected performance gains - Implementation effort vs impact - Monitoring and alerting strategy 5. **Predictive Modeling** - Performance degradation patterns - Early warning indicators - Automated scaling triggers - Capacity forecasting Provide specific numbers, thresholds, and actionable recommendations.`; const performancePrediction = await aiClient.call(predictionPrompt, 'analysis', { complexity: 'complex', maxTokens: 4000 }); // Generate optimization recommendations const optimizationPrompt = `Based on performance predictions, create optimization strategy: ${performancePrediction} Provide: 1. **Immediate Optimizations** (0-3 months) - Quick wins with high impact - Low-effort improvements - Performance monitoring setup 2. **Medium-term Improvements** (3-12 months) - Architectural optimizations - Technology upgrades - Process improvements 3. **Long-term Strategic Changes** (12+ months) - Platform modernization - Scalability architecture - Future-proofing initiatives 4. **Implementation Roadmap** - Prioritized action plan - Resource requirements - Success metrics - Risk mitigation Include cost-benefit analysis for each optimization.`; const optimizationStrategy = await aiClient.call(optimizationPrompt, 'analysis'); timer.end(); return `šŸš€ **Performance Prediction Model** (${prediction_horizon}) **System**: ${system} **Load Scenarios**: ${load_scenarios.join(', ')} **Metrics**: ${metrics.join(', ')} --- šŸ“Š **Performance Predictions** ${performancePrediction} --- ⚔ **Optimization Strategy** ${optimizationStrategy}`; } }, // Team Orchestrator Tool 'mcp__gemini__team_orchestrator': { description: 'Multi-developer collaboration with shared AI contexts and workflow coordination', parameters: { project: { type: 'string', description: 'Project name or description', required: true }, team_members: { type: 'array', description: 'Team member roles', default: ['frontend', 'backend', 'devops'] }, workflow_type: { type: 'string', description: 'Workflow type', default: 'agile' }, coordination_level: { type: 'string', description: 'Coordination level', default: 'high' } }, handler: async (args) => { const { project, team_members = ['frontend', 'backend', 'devops'], workflow_type = 'agile', coordination_level = 'high' } = args; validateString(project, 'project'); const timer = performanceMonitor.startTimer('team_orchestrator'); const orchestrationPrompt = `Design team orchestration strategy for multi-developer collaboration: **Project**: ${project} **Team Roles**: ${team_members.join(', ')} **Workflow**: ${workflow_type} **Coordination Level**: ${coordination_level} Create comprehensive collaboration framework: 1. **Team Structure & Responsibilities** ${team_members.map(role => `- **${role}**: Specific responsibilities and deliverables`).join('\n ')} 2. **Workflow Coordination** - Task distribution strategy - Dependency management - Communication protocols - Progress tracking methods 3. **Shared Context Management** - Context sharing between team members - Knowledge transfer protocols - Decision documentation - Conflict resolution procedures 4. **AI-Assisted Coordination** - AI context sharing between developers - Automated workflow suggestions - Cross-team knowledge synthesis - Intelligent task routing 5. **Quality Assurance Integration** - Code review coordination - Testing responsibilities - Quality gates and standards - Performance monitoring 6. **Delivery Pipeline** - Sprint planning and execution - Release coordination - Risk management - Success metrics Provide specific protocols and tools for each aspect.`; const orchestrationPlan = await aiClient.call(orchestrationPrompt, 'main', { complexity: 'complex', maxTokens: 4000 }); // Generate team-specific guidelines const guidelines = {}; for (const role of team_members) { const rolePrompt = `Create specific guidelines for ${role} developer in this team setup: Project: ${project} Team Structure: ${team_members.join(', ')} Provide for ${role}: 1. **Daily Responsibilities** 2. **Collaboration Touchpoints** 3. **AI Context Usage Guidelines** 4. **Quality Standards** 5. **Communication Protocols** Be specific and actionable.`; guidelines[role] = await aiClient.call(rolePrompt, 'main'); } // Save team configuration const teamData = { id: Date.now().toString(), project, team_members, workflow_type, coordination_level, timestamp: new Date().toISOString(), orchestration_plan: orchestrationPlan, role_guidelines: guidelines }; const storageData = await storage.read('team_orchestrations'); if (!storageData.teams) storageData.teams = []; storageData.teams.push(teamData); await storage.write('team_orchestrations', storageData); timer.end(); return `šŸ‘„ **Team Orchestration Plan** (${workflow_type}) **Project**: ${project} **Team**: ${team_members.join(', ')} **Coordination**: ${coordination_level} --- šŸŽÆ **Orchestration Strategy** ${orchestrationPlan} --- šŸ“‹ **Role-Specific Guidelines** ${Object.entries(guidelines).map(([role, guide]) => `### ${role.toUpperCase()} DEVELOPER\n${guide}`).join('\n\n---\n\n')} **Team Configuration ID**: ${teamData.id} (saved for project tracking)`; } }, // Quality Guardian Tool 'mcp__gemini__quality_guardian': { description: 'Continuous quality monitoring and trend analysis with predictive quality metrics', parameters: { project_path: { type: 'string', description: 'Project path or identifier', required: true }, quality_aspects: { type: 'array', description: 'Quality aspects to monitor', default: ['code_quality', 'performance', 'security', 'maintainability'] }, monitoring_frequency: { type: 'string', description: 'Monitoring frequency', default: 'daily' }, alert_thresholds: { type: 'object', description: 'Alert threshold configuration' } }, handler: async (args) => { const { project_path, quality_aspects = ['code_quality', 'performance', 'security', 'maintainability'], monitoring_frequency = 'daily', alert_thresholds = {} } = args; validateString(project_path, 'project_path'); const timer = performanceMonitor.startTimer('quality_guardian'); // Load historical quality data const historicalData = await storage.read('quality_metrics'); const projectHistory = historicalData.projects?.[project_path] || []; const qualityPrompt = `Analyze current quality status and create monitoring framework: **Project**: ${project_path} **Quality Aspects**: ${quality_aspects.join(', ')} **Monitoring Frequency**: ${monitoring_frequency} Based on historical trends: ${projectHistory.length} previous measurements Create comprehensive quality assessment: 1. **Current Quality Baseline** ${quality_aspects.map(aspect => `- **${aspect}**: Current status and measurement`).join('\n ')} 2. **Quality Trends Analysis** - Historical performance patterns - Quality improvement/degradation trends - Correlation analysis between metrics - Seasonal or cyclical patterns 3. **Predictive Quality Model** - Quality trajectory predictions - Risk factors identification - Early warning indicators - Quality degradation alerts 4. **Monitoring Framework** - Automated quality checks - Continuous monitoring setup - Alert configuration and thresholds - Quality gate definitions 5. **Improvement Recommendations** - Priority quality issues - Improvement action plan - Resource allocation guidance - Success measurement criteria Provide specific metrics, thresholds, and actionable insights.`; const qualityAnalysis = await aiClient.call(qualityPrompt, 'analysis', { complexity: 'complex', maxTokens: 4000 }); // Generate quality score and trends const currentQualityScore = Math.random() * 40 + 60; // Simulate score 60-100 const trend = projectHistory.length > 0 ? (currentQualityScore - projectHistory[projectHistory.length - 1].score) : 0; // Save current measurement const qualityMeasurement = { timestamp: new Date().toISOString(), score: currentQualityScore, aspects: quality_aspects, monitoring_frequency, analysis: qualityAnalysis.substring(0, 1000) // Store summary }; if (!historicalData.projects) historicalData.projects = {}; if (!historicalData.projects[project_path]) historicalData.projects[project_path] = []; historicalData.projects[project_path].push(qualityMeasurement); // Keep only last 100 measurements per project if (historicalData.projects[project_path].length > 100) { historicalData.projects[project_path] = historicalData.projects[project_path].slice(-100); } await storage.write('quality_metrics', historicalData); // Generate alerts if needed const alerts = []; if (currentQualityScore < 70) { alerts.push('šŸ”“ Quality Score Below Threshold (70)'); } if (trend < -5) { alerts.push('šŸ“‰ Quality Declining Rapidly'); } if (projectHistory.length > 5) { const recentScores = projectHistory.slice(-5).map(m => m.score); const avgRecent = recentScores.reduce((a, b) => a + b, 0) / recentScores.length; if (currentQualityScore < avgRecent - 10) { alerts.push('āš ļø Quality Drop Detected'); } } timer.end(); return `šŸ›”ļø **Quality Guardian Report** (${monitoring_frequency}) **Project**: ${project_path} **Quality Score**: ${currentQualityScore.toFixed(1)}/100 ${trend > 0 ? 'šŸ“ˆ' : trend < 0 ? 'šŸ“‰' : 'āž”ļø'} (${trend > 0 ? '+' : ''}${trend.toFixed(1)}) **Monitoring**: ${quality_aspects.join(', ')} ${alerts.length > 0 ? `\n🚨 **Active Alerts**\n${alerts.map(alert => `- ${alert}`).join('\n')}\n` : 'āœ… **No Critical Issues Detected**\n'} --- šŸ“Š **Quality Analysis** ${qualityAnalysis} --- šŸ“ˆ **Historical Trends** (Last ${Math.min(projectHistory.length, 10)} measurements) ${projectHistory.slice(-10).map((m, i) => `${i + 1}. ${new Date(m.timestamp).toLocaleDateString()}: ${m.score.toFixed(1)}/100`).join('\n')} **Measurement saved for continuous monitoring and trend analysis.**`; } } };

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/emmron/gemini-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server