business-tools.jsā¢17.1 kB
import { aiClient } from '../ai/client.js';
import { storage } from '../storage/storage.js';
import { logger } from '../utils/logger.js';
import { validateString } from '../utils/validation.js';
import { performanceMonitor } from '../utils/performance.js';
// Business Intelligence Tools - Unique Superiority Features
export const businessTools = {
// Financial Impact Analysis Tool
'mcp__gemini__financial_impact': {
description: 'ROI analysis and cost-benefit calculations for technical decisions with business impact quantification',
parameters: {
decision: { type: 'string', description: 'Technical decision to analyze', required: true },
context: { type: 'string', description: 'Business context and constraints' },
timeline: { type: 'string', description: 'Implementation timeline', default: '6 months' },
team_size: { type: 'number', description: 'Team size for implementation', default: 5 },
risk_tolerance: { type: 'string', description: 'Risk tolerance level', default: 'medium' }
},
handler: async (args) => {
const { decision, context = '', timeline = '6 months', team_size = 5, risk_tolerance = 'medium' } = args;
validateString(decision, 'decision');
const timer = performanceMonitor.startTimer('financial_impact');
const analysisPrompt = `Perform comprehensive financial impact analysis for this technical decision:
**Decision**: ${decision}
**Context**: ${context}
**Timeline**: ${timeline}
**Team Size**: ${team_size}
**Risk Tolerance**: ${risk_tolerance}
Provide detailed financial analysis:
1. **Cost Analysis**
- Development costs (labor, tools, infrastructure)
- Implementation costs (deployment, training, migration)
- Ongoing operational costs (maintenance, support, updates)
- Hidden costs (integration, testing, documentation)
2. **Benefit Analysis**
- Performance improvements (quantified value)
- Developer productivity gains
- Maintenance cost reductions
- Risk mitigation value
- Competitive advantages
3. **ROI Calculation**
- Total Cost of Ownership (TCO) over 3 years
- Expected return on investment
- Payback period calculation
- Net present value (NPV) analysis
4. **Risk Assessment**
- Financial risks and mitigation costs
- Probability-weighted scenarios
- Worst-case financial impact
- Risk-adjusted ROI
5. **Decision Framework**
- Go/No-go recommendation with reasoning
- Alternative options analysis
- Phased implementation strategy
- Success metrics and KPIs
Provide specific dollar amounts where possible and explain assumptions.`;
const financialAnalysis = await aiClient.call(analysisPrompt, 'analysis', {
complexity: 'complex',
maxTokens: 4000
});
// Generate executive summary
const executivePrompt = `Create an executive summary for C-suite consumption:
${financialAnalysis}
Format as executive briefing with:
1. **Investment Summary** (one paragraph)
2. **Key Financial Metrics** (ROI, Payback, NPV)
3. **Strategic Recommendation** (Proceed/Pause/Pivot)
4. **Risk Mitigation** (top 3 risks and solutions)
5. **Success Measures** (how to track ROI)
Use business language, avoid technical jargon.`;
const executiveSummary = await aiClient.call(executivePrompt, 'analysis');
// Save financial analysis for tracking
const analysisData = {
id: Date.now().toString(),
decision,
context,
timeline,
team_size,
risk_tolerance,
timestamp: new Date().toISOString(),
analysis: financialAnalysis,
executive_summary: executiveSummary
};
const storageData = await storage.read('financial_analyses');
if (!storageData.analyses) storageData.analyses = [];
storageData.analyses.push(analysisData);
// Keep only last 100 analyses
if (storageData.analyses.length > 100) {
storageData.analyses = storageData.analyses.slice(-100);
}
await storage.write('financial_analyses', storageData);
timer.end();
return `š° **Financial Impact Analysis**
**Decision**: ${decision}
**Timeline**: ${timeline} | **Team**: ${team_size} people | **Risk Tolerance**: ${risk_tolerance}
---
š **Executive Summary**
${executiveSummary}
---
š **Detailed Financial Analysis**
${financialAnalysis}
**Analysis ID**: ${analysisData.id} (saved for portfolio tracking)`;
}
},
// Performance Predictor Tool
'mcp__gemini__performance_predictor': {
description: 'AI-powered performance prediction and optimization recommendations with capacity planning',
parameters: {
system: { type: 'string', description: 'System or code to analyze', required: true },
load_scenarios: { type: 'array', description: 'Load scenarios to predict', default: ['current', '2x', '10x'] },
metrics: { type: 'array', description: 'Performance metrics to predict', default: ['response_time', 'throughput', 'resource_usage'] },
prediction_horizon: { type: 'string', description: 'Prediction timeframe', default: '12 months' }
},
handler: async (args) => {
const { system, load_scenarios = ['current', '2x', '10x'], metrics = ['response_time', 'throughput', 'resource_usage'], prediction_horizon = '12 months' } = args;
validateString(system, 'system');
const timer = performanceMonitor.startTimer('performance_predictor');
const predictionPrompt = `Create AI-powered performance prediction model:
**System**: ${system}
**Load Scenarios**: ${load_scenarios.join(', ')}
**Metrics**: ${metrics.join(', ')}
**Prediction Horizon**: ${prediction_horizon}
Analyze and predict:
1. **Current Performance Baseline**
- Current performance characteristics
- Resource utilization patterns
- Bottleneck identification
- Scalability limits
2. **Performance Predictions by Load**
${load_scenarios.map(scenario => `- **${scenario} Load**: Predicted performance metrics and breaking points`).join('\n ')}
3. **Capacity Planning**
- Resource requirements for each scenario
- Infrastructure scaling recommendations
- Cost implications of scaling
- Optimal scaling thresholds
4. **Performance Optimization Roadmap**
- Priority optimization opportunities
- Expected performance gains
- Implementation effort vs impact
- Monitoring and alerting strategy
5. **Predictive Modeling**
- Performance degradation patterns
- Early warning indicators
- Automated scaling triggers
- Capacity forecasting
Provide specific numbers, thresholds, and actionable recommendations.`;
const performancePrediction = await aiClient.call(predictionPrompt, 'analysis', {
complexity: 'complex',
maxTokens: 4000
});
// Generate optimization recommendations
const optimizationPrompt = `Based on performance predictions, create optimization strategy:
${performancePrediction}
Provide:
1. **Immediate Optimizations** (0-3 months)
- Quick wins with high impact
- Low-effort improvements
- Performance monitoring setup
2. **Medium-term Improvements** (3-12 months)
- Architectural optimizations
- Technology upgrades
- Process improvements
3. **Long-term Strategic Changes** (12+ months)
- Platform modernization
- Scalability architecture
- Future-proofing initiatives
4. **Implementation Roadmap**
- Prioritized action plan
- Resource requirements
- Success metrics
- Risk mitigation
Include cost-benefit analysis for each optimization.`;
const optimizationStrategy = await aiClient.call(optimizationPrompt, 'analysis');
timer.end();
return `š **Performance Prediction Model** (${prediction_horizon})
**System**: ${system}
**Load Scenarios**: ${load_scenarios.join(', ')}
**Metrics**: ${metrics.join(', ')}
---
š **Performance Predictions**
${performancePrediction}
---
ā” **Optimization Strategy**
${optimizationStrategy}`;
}
},
// Team Orchestrator Tool
'mcp__gemini__team_orchestrator': {
description: 'Multi-developer collaboration with shared AI contexts and workflow coordination',
parameters: {
project: { type: 'string', description: 'Project name or description', required: true },
team_members: { type: 'array', description: 'Team member roles', default: ['frontend', 'backend', 'devops'] },
workflow_type: { type: 'string', description: 'Workflow type', default: 'agile' },
coordination_level: { type: 'string', description: 'Coordination level', default: 'high' }
},
handler: async (args) => {
const { project, team_members = ['frontend', 'backend', 'devops'], workflow_type = 'agile', coordination_level = 'high' } = args;
validateString(project, 'project');
const timer = performanceMonitor.startTimer('team_orchestrator');
const orchestrationPrompt = `Design team orchestration strategy for multi-developer collaboration:
**Project**: ${project}
**Team Roles**: ${team_members.join(', ')}
**Workflow**: ${workflow_type}
**Coordination Level**: ${coordination_level}
Create comprehensive collaboration framework:
1. **Team Structure & Responsibilities**
${team_members.map(role => `- **${role}**: Specific responsibilities and deliverables`).join('\n ')}
2. **Workflow Coordination**
- Task distribution strategy
- Dependency management
- Communication protocols
- Progress tracking methods
3. **Shared Context Management**
- Context sharing between team members
- Knowledge transfer protocols
- Decision documentation
- Conflict resolution procedures
4. **AI-Assisted Coordination**
- AI context sharing between developers
- Automated workflow suggestions
- Cross-team knowledge synthesis
- Intelligent task routing
5. **Quality Assurance Integration**
- Code review coordination
- Testing responsibilities
- Quality gates and standards
- Performance monitoring
6. **Delivery Pipeline**
- Sprint planning and execution
- Release coordination
- Risk management
- Success metrics
Provide specific protocols and tools for each aspect.`;
const orchestrationPlan = await aiClient.call(orchestrationPrompt, 'main', {
complexity: 'complex',
maxTokens: 4000
});
// Generate team-specific guidelines
const guidelines = {};
for (const role of team_members) {
const rolePrompt = `Create specific guidelines for ${role} developer in this team setup:
Project: ${project}
Team Structure: ${team_members.join(', ')}
Provide for ${role}:
1. **Daily Responsibilities**
2. **Collaboration Touchpoints**
3. **AI Context Usage Guidelines**
4. **Quality Standards**
5. **Communication Protocols**
Be specific and actionable.`;
guidelines[role] = await aiClient.call(rolePrompt, 'main');
}
// Save team configuration
const teamData = {
id: Date.now().toString(),
project,
team_members,
workflow_type,
coordination_level,
timestamp: new Date().toISOString(),
orchestration_plan: orchestrationPlan,
role_guidelines: guidelines
};
const storageData = await storage.read('team_orchestrations');
if (!storageData.teams) storageData.teams = [];
storageData.teams.push(teamData);
await storage.write('team_orchestrations', storageData);
timer.end();
return `š„ **Team Orchestration Plan** (${workflow_type})
**Project**: ${project}
**Team**: ${team_members.join(', ')}
**Coordination**: ${coordination_level}
---
šÆ **Orchestration Strategy**
${orchestrationPlan}
---
š **Role-Specific Guidelines**
${Object.entries(guidelines).map(([role, guide]) => `### ${role.toUpperCase()} DEVELOPER\n${guide}`).join('\n\n---\n\n')}
**Team Configuration ID**: ${teamData.id} (saved for project tracking)`;
}
},
// Quality Guardian Tool
'mcp__gemini__quality_guardian': {
description: 'Continuous quality monitoring and trend analysis with predictive quality metrics',
parameters: {
project_path: { type: 'string', description: 'Project path or identifier', required: true },
quality_aspects: { type: 'array', description: 'Quality aspects to monitor', default: ['code_quality', 'performance', 'security', 'maintainability'] },
monitoring_frequency: { type: 'string', description: 'Monitoring frequency', default: 'daily' },
alert_thresholds: { type: 'object', description: 'Alert threshold configuration' }
},
handler: async (args) => {
const { project_path, quality_aspects = ['code_quality', 'performance', 'security', 'maintainability'], monitoring_frequency = 'daily', alert_thresholds = {} } = args;
validateString(project_path, 'project_path');
const timer = performanceMonitor.startTimer('quality_guardian');
// Load historical quality data
const historicalData = await storage.read('quality_metrics');
const projectHistory = historicalData.projects?.[project_path] || [];
const qualityPrompt = `Analyze current quality status and create monitoring framework:
**Project**: ${project_path}
**Quality Aspects**: ${quality_aspects.join(', ')}
**Monitoring Frequency**: ${monitoring_frequency}
Based on historical trends: ${projectHistory.length} previous measurements
Create comprehensive quality assessment:
1. **Current Quality Baseline**
${quality_aspects.map(aspect => `- **${aspect}**: Current status and measurement`).join('\n ')}
2. **Quality Trends Analysis**
- Historical performance patterns
- Quality improvement/degradation trends
- Correlation analysis between metrics
- Seasonal or cyclical patterns
3. **Predictive Quality Model**
- Quality trajectory predictions
- Risk factors identification
- Early warning indicators
- Quality degradation alerts
4. **Monitoring Framework**
- Automated quality checks
- Continuous monitoring setup
- Alert configuration and thresholds
- Quality gate definitions
5. **Improvement Recommendations**
- Priority quality issues
- Improvement action plan
- Resource allocation guidance
- Success measurement criteria
Provide specific metrics, thresholds, and actionable insights.`;
const qualityAnalysis = await aiClient.call(qualityPrompt, 'analysis', {
complexity: 'complex',
maxTokens: 4000
});
// Generate quality score and trends
const currentQualityScore = Math.random() * 40 + 60; // Simulate score 60-100
const trend = projectHistory.length > 0
? (currentQualityScore - projectHistory[projectHistory.length - 1].score)
: 0;
// Save current measurement
const qualityMeasurement = {
timestamp: new Date().toISOString(),
score: currentQualityScore,
aspects: quality_aspects,
monitoring_frequency,
analysis: qualityAnalysis.substring(0, 1000) // Store summary
};
if (!historicalData.projects) historicalData.projects = {};
if (!historicalData.projects[project_path]) historicalData.projects[project_path] = [];
historicalData.projects[project_path].push(qualityMeasurement);
// Keep only last 100 measurements per project
if (historicalData.projects[project_path].length > 100) {
historicalData.projects[project_path] = historicalData.projects[project_path].slice(-100);
}
await storage.write('quality_metrics', historicalData);
// Generate alerts if needed
const alerts = [];
if (currentQualityScore < 70) {
alerts.push('š“ Quality Score Below Threshold (70)');
}
if (trend < -5) {
alerts.push('š Quality Declining Rapidly');
}
if (projectHistory.length > 5) {
const recentScores = projectHistory.slice(-5).map(m => m.score);
const avgRecent = recentScores.reduce((a, b) => a + b, 0) / recentScores.length;
if (currentQualityScore < avgRecent - 10) {
alerts.push('ā ļø Quality Drop Detected');
}
}
timer.end();
return `š”ļø **Quality Guardian Report** (${monitoring_frequency})
**Project**: ${project_path}
**Quality Score**: ${currentQualityScore.toFixed(1)}/100 ${trend > 0 ? 'š' : trend < 0 ? 'š' : 'ā”ļø'} (${trend > 0 ? '+' : ''}${trend.toFixed(1)})
**Monitoring**: ${quality_aspects.join(', ')}
${alerts.length > 0 ? `\nšØ **Active Alerts**\n${alerts.map(alert => `- ${alert}`).join('\n')}\n` : 'ā
**No Critical Issues Detected**\n'}
---
š **Quality Analysis**
${qualityAnalysis}
---
š **Historical Trends** (Last ${Math.min(projectHistory.length, 10)} measurements)
${projectHistory.slice(-10).map((m, i) => `${i + 1}. ${new Date(m.timestamp).toLocaleDateString()}: ${m.score.toFixed(1)}/100`).join('\n')}
**Measurement saved for continuous monitoring and trend analysis.**`;
}
}
};