Skip to main content
Glama

Hugging Face Hub Semantic Search MCP

by davanstrien
README.md5.6 kB
# Hugging Face Hub Semantic Search MCP Server > **⚠️ Note**: This is an **unofficial** MCP server inspired by Hugging Face's official MCP server. It may be deprecated at any time if official functionality supersedes it. For the official server, see [hf.co/mcp](https://hf.co/mcp). An MCP (Model Context Protocol) server that provides semantic search capabilities for Hugging Face models and datasets. This server enables Claude and other MCP-compatible clients to search, discover, and explore the Hugging Face ecosystem using natural language queries. ## Features - **Semantic Search**: AI-powered similarity search (not just keyword matching) - **Dataset Search**: Find datasets based on natural language descriptions - **Model Search**: Find models with optional parameter count filtering - **Similarity Search**: Find similar models/datasets to a given one - **Trending Content**: Get currently trending models and datasets - **Detailed Metadata**: Access comprehensive technical information via HuggingFace API - **Model/Dataset Cards**: Download README cards for detailed information ## Tools Available ### Dataset Tools - `search_datasets`: Search datasets using natural language queries - `find_similar_datasets`: Find datasets similar to a specified one - `get_trending_datasets`: Get currently trending datasets - `get_dataset_info`: Get detailed metadata for a specific dataset - `download_dataset_card`: Download README card for a dataset ### Model Tools - `search_models`: Search models using natural language queries with parameter filtering - `find_similar_models`: Find models similar to a specified one - `get_trending_models`: Get currently trending models with parameter filtering - `get_model_info`: Get detailed metadata for a specific model - `get_model_safetensors_metadata`: Get model architecture details and parameter count from safetensors - `download_model_card`: Download README card for a model ## Installation ### Prerequisites - [UV](https://docs.astral.sh/uv/) - Fast Python package installer - Claude Desktop or another MCP-compatible client ### Quick Start No installation needed! UV will automatically fetch and run the server. ## Configuration ### Claude Desktop Setup Add the following to your Claude Desktop configuration file: **macOS**: `~/Library/Application Support/Claude/claude_desktop_config.json` **Windows**: `%APPDATA%/Claude/claude_desktop_config.json` ```json { "mcpServers": { "huggingface-hub-search": { "command": "uvx", "args": [ "git+https://github.com/davanstrien/hub-semantic-search-mcp.git" ], "env": { "HF_SEARCH_API_URL": "https://davanstrien-huggingface-datasets-search-v2.hf.space" } } } } ``` ### Alternative: Local Development Setup If you want to contribute or modify the code: ```bash # Clone the repository git clone https://github.com/davanstrien/hub-semantic-search-mcp.git cd hub-semantic-search-mcp # Install dependencies with UV uv sync ``` Then configure Claude Desktop to use the local version: ```json { "mcpServers": { "huggingface-hub-search": { "command": "uv", "args": [ "--directory", "/path/to/hub-semantic-search-mcp", "run", "python", "app.py" ], "env": { "HF_SEARCH_API_URL": "https://davanstrien-huggingface-datasets-search-v2.hf.space" } } } } ``` ## Usage Examples Once configured, you can use the tools in Claude Desktop: ### Search for Datasets > "Find datasets about climate change and weather patterns" ### Search for Models > "Find small language models under 1B parameters for text generation" ### Find Similar Content > "Find datasets similar to 'squad' for question answering" ### Get Trending Content > "Show me the top 10 trending AI models this week" ### Get Detailed Metadata > "Get detailed information about the 'stanford-nlp/imdb' dataset" > "Show me technical details and configuration for 'microsoft/DialoGPT-medium'" > "What's the parameter count and architecture of 'microsoft/DialoGPT-medium'?" ### Download Documentation > "Download the model card for 'microsoft/DialoGPT-medium'" ## Environment Variables - `HF_SEARCH_API_URL`: Base URL for the search API (default: https://davanstrien-huggingface-datasets-search-v2.hf.space) ## Search Backend This MCP server connects to a semantic search API that indexes Hugging Face models and datasets with AI-generated summaries. The search uses embedding-based similarity rather than keyword matching, making it more effective for discovering relevant content based on intent and meaning. ## Development ### Running Locally ```bash # Run the server directly uv run python app.py # Or activate the virtual environment uv shell python app.py ``` ### Testing with MCP Inspector ```bash # Test the GitHub version npx @modelcontextprotocol/inspector uvx git+https://github.com/davanstrien/hub-semantic-search-mcp.git # Or test locally npx @modelcontextprotocol/inspector uv run python app.py ``` ## Contributing Contributions are welcome! Please feel free to submit issues and pull requests. ### Development Setup ```bash git clone https://github.com/davanstrien/hub-semantic-search-mcp.git cd hub-semantic-search-mcp uv sync --dev ``` ## License MIT License - see LICENSE file for details. ## Related Projects - [Model Context Protocol](https://github.com/modelcontextprotocol/python-sdk) - [Hugging Face Hub](https://huggingface.co/docs/hub/) - [Claude Desktop](https://claude.ai/download) - [UV](https://docs.astral.sh/uv/) - Fast Python package installer

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/davanstrien/hub-semantic-search-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server