"use strict";
var __importDefault = (this && this.__importDefault) || function (mod) {
return (mod && mod.__esModule) ? mod : { "default": mod };
};
Object.defineProperty(exports, "__esModule", { value: true });
exports.MetadataGenerator = exports.TemplateMetadataSchema = void 0;
const openai_1 = __importDefault(require("openai"));
const zod_1 = require("zod");
const logger_1 = require("../utils/logger");
exports.TemplateMetadataSchema = zod_1.z.object({
categories: zod_1.z.array(zod_1.z.string()).max(5).describe('Main categories (max 5)'),
complexity: zod_1.z.enum(['simple', 'medium', 'complex']).describe('Implementation complexity'),
use_cases: zod_1.z.array(zod_1.z.string()).max(5).describe('Primary use cases'),
estimated_setup_minutes: zod_1.z.number().min(5).max(480).describe('Setup time in minutes'),
required_services: zod_1.z.array(zod_1.z.string()).describe('External services needed'),
key_features: zod_1.z.array(zod_1.z.string()).max(5).describe('Main capabilities'),
target_audience: zod_1.z.array(zod_1.z.string()).max(3).describe('Target users')
});
class MetadataGenerator {
constructor(apiKey, model = 'gpt-5-mini-2025-08-07') {
this.client = new openai_1.default({ apiKey });
this.model = model;
}
getJsonSchema() {
return {
name: 'template_metadata',
strict: true,
schema: {
type: 'object',
properties: {
categories: {
type: 'array',
items: { type: 'string' },
maxItems: 5,
description: 'Main categories like automation, integration, data processing'
},
complexity: {
type: 'string',
enum: ['simple', 'medium', 'complex'],
description: 'Implementation complexity level'
},
use_cases: {
type: 'array',
items: { type: 'string' },
maxItems: 5,
description: 'Primary use cases for this template'
},
estimated_setup_minutes: {
type: 'number',
minimum: 5,
maximum: 480,
description: 'Estimated setup time in minutes'
},
required_services: {
type: 'array',
items: { type: 'string' },
description: 'External services or APIs required'
},
key_features: {
type: 'array',
items: { type: 'string' },
maxItems: 5,
description: 'Main capabilities or features'
},
target_audience: {
type: 'array',
items: { type: 'string' },
maxItems: 3,
description: 'Target users like developers, marketers, analysts'
}
},
required: [
'categories',
'complexity',
'use_cases',
'estimated_setup_minutes',
'required_services',
'key_features',
'target_audience'
],
additionalProperties: false
}
};
}
createBatchRequest(template) {
const nodesSummary = this.summarizeNodes(template.nodes);
const sanitizedName = this.sanitizeInput(template.name, Math.max(200, template.name.length));
const sanitizedDescription = template.description ?
this.sanitizeInput(template.description, 500) : '';
const context = [
`Template: ${sanitizedName}`,
sanitizedDescription ? `Description: ${sanitizedDescription}` : '',
`Nodes Used (${template.nodes.length}): ${nodesSummary}`,
template.workflow ? `Workflow has ${template.workflow.nodes?.length || 0} nodes with ${Object.keys(template.workflow.connections || {}).length} connections` : ''
].filter(Boolean).join('\n');
return {
custom_id: `template-${template.templateId}`,
method: 'POST',
url: '/v1/chat/completions',
body: {
model: this.model,
max_completion_tokens: 3000,
response_format: {
type: 'json_schema',
json_schema: this.getJsonSchema()
},
messages: [
{
role: 'system',
content: `Analyze n8n workflow templates and extract metadata. Be concise.`
},
{
role: 'user',
content: context
}
]
}
};
}
sanitizeInput(input, maxLength) {
let sanitized = input.slice(0, maxLength);
sanitized = sanitized.replace(/[\x00-\x1F\x7F-\x9F]/g, '');
sanitized = sanitized.replace(/\s+/g, ' ').trim();
sanitized = sanitized.replace(/\b(system|assistant|user|human|ai):/gi, '');
sanitized = sanitized.replace(/```[\s\S]*?```/g, '');
sanitized = sanitized.replace(/\[INST\]|\[\/INST\]/g, '');
return sanitized;
}
summarizeNodes(nodes) {
const nodeGroups = {};
for (const node of nodes) {
const baseName = node.split('.').pop() || node;
if (baseName.includes('webhook') || baseName.includes('http')) {
nodeGroups['HTTP/Webhooks'] = (nodeGroups['HTTP/Webhooks'] || 0) + 1;
}
else if (baseName.includes('database') || baseName.includes('postgres') || baseName.includes('mysql')) {
nodeGroups['Database'] = (nodeGroups['Database'] || 0) + 1;
}
else if (baseName.includes('slack') || baseName.includes('email') || baseName.includes('gmail')) {
nodeGroups['Communication'] = (nodeGroups['Communication'] || 0) + 1;
}
else if (baseName.includes('ai') || baseName.includes('openai') || baseName.includes('langchain') ||
baseName.toLowerCase().includes('openai') || baseName.includes('agent')) {
nodeGroups['AI/ML'] = (nodeGroups['AI/ML'] || 0) + 1;
}
else if (baseName.includes('sheet') || baseName.includes('csv') || baseName.includes('excel') ||
baseName.toLowerCase().includes('googlesheets')) {
nodeGroups['Spreadsheets'] = (nodeGroups['Spreadsheets'] || 0) + 1;
}
else {
let displayName;
if (node.includes('.with.') && node.includes('@')) {
displayName = node.split('/').pop() || baseName;
}
else {
if (baseName.endsWith('Trigger') && baseName.length > 7) {
displayName = baseName.slice(0, -7);
}
else if (baseName.endsWith('Node') && baseName.length > 4 && baseName !== 'unknownNode') {
displayName = baseName.slice(0, -4);
}
else {
displayName = baseName;
}
}
nodeGroups[displayName] = (nodeGroups[displayName] || 0) + 1;
}
}
const summary = Object.entries(nodeGroups)
.sort((a, b) => b[1] - a[1])
.slice(0, 10)
.map(([name, count]) => count > 1 ? `${name} (${count})` : name)
.join(', ');
return summary;
}
parseResult(result) {
try {
if (result.error) {
return {
templateId: parseInt(result.custom_id.replace('template-', '')),
metadata: this.getDefaultMetadata(),
error: result.error.message
};
}
const response = result.response;
if (!response?.body?.choices?.[0]?.message?.content) {
throw new Error('Invalid response structure');
}
const content = response.body.choices[0].message.content;
const metadata = JSON.parse(content);
const validated = exports.TemplateMetadataSchema.parse(metadata);
return {
templateId: parseInt(result.custom_id.replace('template-', '')),
metadata: validated
};
}
catch (error) {
logger_1.logger.error(`Error parsing result for ${result.custom_id}:`, error);
return {
templateId: parseInt(result.custom_id.replace('template-', '')),
metadata: this.getDefaultMetadata(),
error: error instanceof Error ? error.message : 'Unknown error'
};
}
}
getDefaultMetadata() {
return {
categories: ['automation'],
complexity: 'medium',
use_cases: ['Process automation'],
estimated_setup_minutes: 30,
required_services: [],
key_features: ['Workflow automation'],
target_audience: ['developers']
};
}
async generateSingle(template) {
try {
const completion = await this.client.chat.completions.create({
model: this.model,
max_completion_tokens: 3000,
response_format: {
type: 'json_schema',
json_schema: this.getJsonSchema()
},
messages: [
{
role: 'system',
content: `Analyze n8n workflow templates and extract metadata. Be concise.`
},
{
role: 'user',
content: `Template: ${template.name}\nNodes: ${template.nodes.slice(0, 10).join(', ')}`
}
]
});
const content = completion.choices[0].message.content;
if (!content) {
logger_1.logger.error('No content in OpenAI response');
throw new Error('No content in response');
}
const metadata = JSON.parse(content);
return exports.TemplateMetadataSchema.parse(metadata);
}
catch (error) {
logger_1.logger.error('Error generating single metadata:', error);
return this.getDefaultMetadata();
}
}
}
exports.MetadataGenerator = MetadataGenerator;
//# sourceMappingURL=metadata-generator.js.map