Skip to main content
Glama

Data Query MCP Server

by cfy114514
README.md5.88 kB
# 数据查询 MCP 服务器 | Data Query MCP Server 一个强大的MCP (Model Context Protocol) 服务器,提供用户、产品、订单数据的查询功能,支持WebSocket连接到小智AI平台。 A powerful MCP (Model Context Protocol) server that provides user, product, and order data querying capabilities with WebSocket support for XiaoZhi AI platform. ## 概述 | Overview 本项目实现了一个数据查询MCP服务器,包含以下功能: - 用户数据查询和过滤 - 产品数据查询和过滤 - 订单数据查询和分析 - 用户订单关联查询 - 数据统计分析 This project implements a data query MCP server with the following features: - User data querying and filtering - Product data querying and filtering - Order data querying and analysis - User-order association queries - Data statistics analysis ## 特性 | Features - 🔌 支持WebSocket连接到小智AI平台 | WebSocket connection to XiaoZhi AI platform - 🔄 自动重连机制 | Automatic reconnection with exponential backoff - 📊 实时数据查询 | Real-time data querying - 🛠️ 简单易用的工具接口 | Easy-to-use tool interface - 🔒 安全的WebSocket通信 | Secure WebSocket communication - ⚙️ 多种传输类型支持 | Multiple transport types support (stdio/websocket/sse/http) ## 快速开始 | Quick Start ### 方法1: 使用启动脚本 | Method 1: Using Startup Scripts **Windows PowerShell:** ```powershell .\start.ps1 ``` **Linux/Mac 标准脚本 | Linux/Mac Standard Script:** ```bash chmod +x start.sh ./start.sh ``` **Linux/Mac 简化脚本 | Linux/Mac Simple Script:** ```bash chmod +x start_simple.sh ./start_simple.sh ``` ### 方法2: 服务器部署 | Method 2: Server Deployment **自动部署(推荐用于服务器)| Auto Deployment (Recommended for Servers):** ```bash chmod +x deploy.sh ./deploy.sh ``` **手动部署 | Manual Deployment:** 参考 `MANUAL_START.md` 文件获取详细步骤。 ### 方法3: 系统服务 | Method 3: System Service **Linux系统服务 | Linux System Service:** ```bash # 1. 编辑服务文件 sudo cp mcp-server.service /etc/systemd/system/ sudo nano /etc/systemd/system/mcp-server.service # 2. 启动服务 sudo systemctl daemon-reload sudo systemctl enable mcp-server sudo systemctl start mcp-server # 3. 查看状态 sudo systemctl status mcp-server ``` ### 方法4: 手动设置 | Method 4: Manual Setup 1. **安装依赖 | Install dependencies:** ```bash pip install -r requirements.txt ``` 2. **设置环境变量 | Set environment variables:** **Windows PowerShell:** ```powershell $env:MCP_ENDPOINT = "wss://api.xiaozhi.me/mcp/?token=your_token_here" $env:MCP_CONFIG = "./mcp_config.json" ``` **Linux/Mac Bash:** ```bash export MCP_ENDPOINT="wss://api.xiaozhi.me/mcp/?token=your_token_here" export MCP_CONFIG="./mcp_config.json" ``` 3. **启动服务器 | Start the server:** ```bash # 运行所有配置的服务器 | Run all configured servers python mcp_pipe.py # 或单独运行数据查询服务器 | Or run data query server individually python mcp_pipe.py data_query_server.py ``` ## 项目结构 | Project Structure - `data_query_server.py`: 数据查询MCP服务器,提供用户、产品、订单查询功能 | Data query MCP server with user, product, and order querying - `mcp_pipe.py`: WebSocket连接和进程管理的主通信管道 | Main communication pipe handling WebSocket connections and process management - `mcp_config.json`: 服务器配置文件 | Server configuration file - `requirements.txt`: Python依赖包列表 | Python dependencies list - `.env`: 环境变量配置文件 | Environment variables configuration - `start.ps1`: Windows PowerShell启动脚本 | Windows PowerShell startup script - `start.sh`: Linux/Mac Bash启动脚本 | Linux/Mac Bash startup script - `calculator.py`: Example MCP tool implementation for mathematical calculations | 用于数学计算的MCP工具示例实现 - `requirements.txt`: Project dependencies | 项目依赖 ## Config-driven Servers | 通过配置驱动的服务 编辑 `mcp_config.json` 文件来配置服务器列表(也可设置 `MCP_CONFIG` 环境变量指向其他配置文件)。 配置说明: - 无参数时启动所有配置的服务(自动跳过 `disabled: true` 的条目) - 有参数时运行单个本地脚本文件 - `type=stdio` 直接启动;`type=sse/http` 通过 `python -m mcp_proxy` 代理 ## Creating Your Own MCP Tools | 创建自己的MCP工具 Here's a simple example of creating an MCP tool | 以下是一个创建MCP工具的简单示例: ```python from mcp.server.fastmcp import FastMCP mcp = FastMCP("YourToolName") @mcp.tool() def your_tool(parameter: str) -> dict: """Tool description here""" # Your implementation return {"success": True, "result": result} if __name__ == "__main__": mcp.run(transport="stdio") ``` ## Use Cases | 使用场景 - Mathematical calculations | 数学计算 - Email operations | 邮件操作 - Knowledge base search | 知识库搜索 - Remote device control | 远程设备控制 - Data processing | 数据处理 - Custom tool integration | 自定义工具集成 ## Requirements | 环境要求 - Python 3.7+ - websockets>=11.0.3 - python-dotenv>=1.0.0 - mcp>=1.8.1 - pydantic>=2.11.4 - mcp-proxy>=0.8.2 ## Contributing | 贡献指南 Contributions are welcome! Please feel free to submit a Pull Request. 欢迎贡献代码!请随时提交Pull Request。 ## License | 许可证 This project is licensed under the MIT License - see the LICENSE file for details. 本项目采用MIT许可证 - 详情请查看LICENSE文件。 ## Acknowledgments | 致谢 - Thanks to all contributors who have helped shape this project | 感谢所有帮助塑造这个项目的贡献者 - Inspired by the need for extensible AI capabilities | 灵感来源于对可扩展AI能力的需求

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/cfy114514/mcp-data-processor'

If you have feedback or need assistance with the MCP directory API, please join our Discord server