Skip to main content
Glama
multi_language_support.md17.4 kB
# Multi-Language Support Plan ## Overview This document outlines the comprehensive strategy for expanding AutoDocs MCP Server to support multiple programming languages beyond Python. The goal is to create a universal documentation intelligence system that works across the most popular development ecosystems. ## Language Ecosystem Analysis ### Market Share and Priority Assessment 1. **JavaScript/Node.js**: ~65% of developers (Stack Overflow 2024) 2. **Python**: ~49% of developers (current implementation) 3. **Java**: ~35% of developers (enterprise heavy) 4. **C#/.NET**: ~28% of developers (Microsoft ecosystem) 5. **Go**: ~15% of developers (growing rapidly) 6. **Rust**: ~13% of developers (systems programming, growing) ## Architecture Strategy ### Universal Design Principles - **Language-agnostic core**: Dependency parsing and documentation fetching interfaces - **Plugin architecture**: Language-specific parsers and fetchers as implementations - **Unified caching**: Cross-language cache management with language prefixes - **Consistent MCP interface**: Same tools work across all languages ### Core Abstractions ```python class LanguageEcosystem(ABC): """Abstract base for language-specific implementations""" @abstractmethod def get_dependency_parser(self) -> DependencyParserInterface: """Return language-specific dependency parser""" @abstractmethod def get_documentation_fetchers(self) -> List[DocumentationFetcherInterface]: """Return available documentation sources for this language""" @abstractmethod def detect_project_language(self, project_path: Path) -> bool: """Detect if project uses this language""" class UniversalMCPServer: """Language-agnostic MCP server that delegates to language ecosystems""" def __init__(self): self.ecosystems = [ PythonEcosystem(), NodeJSEcosystem(), DotNetEcosystem(), # ... other languages ] ``` ## Language-Specific Implementation Plans ### 1. Node.js/JavaScript Support (2-3 weeks) #### Ecosystem Overview - **Package Manager**: npm, yarn, pnpm - **Dependency Files**: `package.json`, `package-lock.json`, `yarn.lock` - **Documentation Sources**: npmjs.com, GitHub, JSDoc, TypeScript definitions #### Implementation Plan **Phase 1A: Dependency Parsing (1 week)** ```python class NodeJSDependencyParser(DependencyParserInterface): """Parse Node.js project dependencies""" def parse_dependencies(self, project_path: Path) -> List[Dependency]: # 1. Parse package.json (dependencies, devDependencies, peerDependencies) # 2. Parse lock files for exact versions # 3. Handle scoped packages (@org/package) # 4. Resolve workspace dependencies (monorepos) ``` **Key Features**: - `package.json` parsing with all dependency types - Lock file integration for exact version resolution - Scoped package handling (`@types/*`, `@babel/*`) - Workspace and monorepo support - TypeScript vs JavaScript distinction **Technical Challenges**: - Complex dependency trees with peer dependencies - Monorepo workspace resolution - Version range semantics different from Python - TypeScript definition packages vs runtime packages **Phase 1B: Documentation Sources (1-2 weeks)** ```python class NPMDocumentationFetcher(DocumentationFetcherInterface): """Fetch documentation from npm registry and related sources""" async def fetch_package_info(self, package_name: str) -> PackageInfo: # 1. Fetch from npm registry API # 2. Extract README from registry data # 3. Get GitHub repository information # 4. Parse TypeScript definition files ``` **Documentation Sources**: - **npm Registry API**: `https://registry.npmjs.org/{package}` - **GitHub Integration**: Same as Python (README, examples, source) - **TypeScript Definitions**: JSDoc extraction from .d.ts files - **npmjs.com**: Package pages with usage statistics - **unpkg.com**: Direct source code access **Unique Challenges**: - TypeScript vs JavaScript documentation differences - Complex ecosystem with many micro-packages - Documentation quality varies significantly - Framework-specific documentation patterns (React, Angular, Vue) #### Testing Strategy - **Test Packages**: express, react, lodash, axios, typescript - **Monorepo Testing**: Lerna/Rush/Nx based projects - **TypeScript Integration**: @types/* packages and inline definitions --- ### 2. .NET Support (2-3 weeks) #### Ecosystem Overview - **Package Manager**: NuGet - **Dependency Files**: `.csproj`, `packages.config`, `Directory.Build.props` - **Documentation Sources**: nuget.org, docs.microsoft.com, GitHub, XML docs #### Implementation Plan **Phase 2A: Dependency Parsing (1 week)** ```python class DotNetDependencyParser(DependencyParserInterface): """Parse .NET project dependencies""" def parse_dependencies(self, project_path: Path) -> List[Dependency]: # 1. Parse .csproj files (PackageReference elements) # 2. Handle packages.config (legacy format) # 3. Parse Directory.Build.props for centralized management # 4. Resolve target framework dependencies ``` **Key Features**: - `.csproj` XML parsing for PackageReference elements - Legacy `packages.config` support - Centralized package management with `Directory.Build.props` - Target framework specific dependencies - Version constraint resolution - Multi-targeting project support **Technical Challenges**: - Multiple project file formats (.csproj, .vbproj, .fsproj) - Complex target framework matrix - Legacy vs modern .NET differences - Enterprise package sources (private NuGet feeds) **Phase 2B: Documentation Sources (1-2 weeks)** ```python class NuGetDocumentationFetcher(DocumentationFetcherInterface): """Fetch documentation from NuGet and Microsoft ecosystem""" async def fetch_package_info(self, package_name: str) -> PackageInfo: # 1. Fetch from NuGet API # 2. Get Microsoft Docs integration # 3. Parse XML documentation comments # 4. Extract GitHub repository information ``` **Documentation Sources**: - **NuGet API**: `https://api.nuget.org/v3-flatcontainer/{package}` - **Microsoft Docs**: docs.microsoft.com integration for official packages - **GitHub Integration**: Repository documentation - **XML Documentation**: Compiled XML doc files - **Source Code**: Reference source and GitHub repositories **Unique Challenges**: - Microsoft-centric documentation ecosystem - XML documentation file parsing - .NET Framework vs .NET Core documentation differences - Enterprise and private package repository integration #### Testing Strategy - **Test Packages**: Newtonsoft.Json, Entity Framework, ASP.NET Core - **Framework Variations**: .NET Framework, .NET Core, .NET 5+ - **Enterprise Scenarios**: Private NuGet feeds and packages --- ### 3. Java Support (3-4 weeks) #### Ecosystem Overview - **Build Systems**: Maven, Gradle, SBT (Scala), Apache Ivy - **Dependency Files**: `pom.xml`, `build.gradle`, `ivy.xml` - **Documentation Sources**: Maven Central, Javadoc, GitHub #### Implementation Plan **Phase 3A: Dependency Parsing (2 weeks)** ```python class JavaDependencyParser(DependencyParserInterface): """Parse Java project dependencies from multiple build systems""" def parse_dependencies(self, project_path: Path) -> List[Dependency]: # 1. Detect build system (Maven vs Gradle vs SBT) # 2. Parse appropriate configuration files # 3. Handle dependency scopes and exclusions # 4. Resolve multi-module projects ``` **Key Features**: - Multi-build system support (Maven, Gradle, SBT) - Complex dependency scope handling (compile, test, runtime, provided) - Dependency exclusion and version conflict resolution - Multi-module project support - Parent POM inheritance - Gradle variant-aware dependency resolution **Technical Challenges**: - Multiple build systems with different syntax and semantics - Complex dependency scopes and exclusions - Version conflict resolution strategies - Enterprise repository and mirror configuration - Gradle's complex dependency model **Phase 3B: Documentation Sources (1-2 weeks)** ```python class MavenCentralDocumentationFetcher(DocumentationFetcherInterface): """Fetch documentation from Maven ecosystem""" async def fetch_package_info(self, package_name: str) -> PackageInfo: # 1. Query Maven Central API # 2. Download and parse Javadoc # 3. Extract source code documentation # 4. Get GitHub repository information ``` **Documentation Sources**: - **Maven Central**: search.maven.org API - **Javadoc**: Generated API documentation - **GitHub Integration**: Repository documentation - **Oracle Docs**: Official Java API documentation - **Spring Docs**: Framework-specific documentation for Spring ecosystem **Unique Challenges**: - GroupId/ArtifactId coordinate system vs simple package names - Javadoc HTML parsing and extraction - Enterprise repository integration - Framework-specific documentation patterns (Spring, Android) #### Testing Strategy - **Test Packages**: Spring Framework, Apache Commons, Jackson, Hibernate - **Build Systems**: Maven and Gradle projects - **Enterprise Scenarios**: Private repositories and corporate proxies --- ### 4. Go Support (1-2 weeks) #### Ecosystem Overview - **Package Manager**: Go modules (built-in) - **Dependency Files**: `go.mod`, `go.sum` - **Documentation Sources**: pkg.go.dev, GitHub #### Implementation Plan **Phase 4A: Dependency Parsing (3-4 days)** ```python class GoDependencyParser(DependencyParserInterface): """Parse Go module dependencies""" def parse_dependencies(self, project_path: Path) -> List[Dependency]: # 1. Parse go.mod for require statements # 2. Handle replace and exclude directives # 3. Parse go.sum for version verification # 4. Handle major version suffixes (v2, v3, etc.) ``` **Key Features**: - `go.mod` parsing for require statements - Replace and exclude directive handling - Version checksum verification from `go.sum` - Major version suffix handling in import paths - Workspace mode support (Go 1.18+) **Technical Challenges**: - Major version semantics with URL path changes - Replace directive complexity for local/fork dependencies - Minimal version selection algorithm understanding **Phase 4B: Documentation Sources (3-4 days)** ```python class GoDocumentationFetcher(DocumentationFetcherInterface): """Fetch documentation from Go ecosystem""" async def fetch_package_info(self, package_name: str) -> PackageInfo: # 1. Query pkg.go.dev API # 2. Extract package documentation # 3. Get GitHub repository information # 4. Parse inline Go documentation ``` **Documentation Sources**: - **pkg.go.dev**: Official Go package documentation - **GitHub Integration**: Repository documentation and examples - **Inline Documentation**: Go doc comments and examples - **Go Blog**: Official Go team blog posts and tutorials **Unique Challenges**: - Module path vs package import path confusion - Major version URL routing on pkg.go.dev - Minimal external documentation culture (relies heavily on inline docs) #### Testing Strategy - **Test Packages**: gorilla/mux, gin-gonic/gin, kubernetes/client-go - **Version Scenarios**: v0, v1, v2+ major versions - **Module Features**: Replace directives, workspace mode --- ### 5. Rust Support (2 weeks) #### Ecosystem Overview - **Package Manager**: Cargo - **Dependency Files**: `Cargo.toml`, `Cargo.lock` - **Documentation Sources**: docs.rs, crates.io, GitHub #### Implementation Plan **Phase 5A: Dependency Parsing (1 week)** ```python class RustDependencyParser(DependencyParserInterface): """Parse Rust project dependencies""" def parse_dependencies(self, project_path: Path) -> List[Dependency]: # 1. Parse Cargo.toml dependencies sections # 2. Handle feature flags and optional dependencies # 3. Parse workspace configurations # 4. Handle build dependencies and dev dependencies ``` **Key Features**: - `Cargo.toml` parsing for multiple dependency sections - Feature flag resolution and optional dependencies - Workspace member dependency management - Build-time vs runtime dependency distinction - Version requirement syntax (semantic versioning with extensions) **Technical Challenges**: - Feature-based conditional compilation - Workspace dependency management complexity - Optional dependency resolution - Platform-specific dependencies **Phase 5B: Documentation Sources (1 week)** ```python class DocsRsDocumentationFetcher(DocumentationFetcherInterface): """Fetch documentation from Rust ecosystem""" async def fetch_package_info(self, package_name: str) -> PackageInfo: # 1. Query crates.io API # 2. Fetch docs.rs documentation # 3. Extract README and repository information # 4. Parse feature flag documentation ``` **Documentation Sources**: - **docs.rs**: Automatically generated documentation - **crates.io**: Package registry with metadata - **GitHub Integration**: Repository documentation and examples - **The Rust Book**: Official language documentation integration **Unique Challenges**: - Feature flag documentation and examples - Workspace vs single-crate documentation - docs.rs build failures and fallback strategies #### Testing Strategy - **Test Packages**: serde, tokio, clap, reqwest - **Feature Scenarios**: Default features, optional features, feature combinations - **Workspace Testing**: Multi-crate workspace projects ## Universal Implementation Strategy ### Phase-by-Phase Rollout **Phase 1: Foundation + Node.js (3-4 weeks)** - Implement universal architecture - Complete Node.js ecosystem support - Multi-language MCP tool interface **Phase 2: Rapid Expansion (4-5 weeks)** - Go support (simple, validates architecture) - .NET support (enterprise validation) **Phase 3: Complex Ecosystems (6-8 weeks)** - Java support (most complex dependency resolution) - Rust support (feature flag complexity) **Phase 4: Polish & Integration (2-3 weeks)** - Cross-language dependency analysis - Universal documentation aggregation - Performance optimization ### Universal MCP Tools ```python # Enhanced tools that work across all languages class UniversalMCPTools: @mcp_tool async def scan_project_dependencies(self, project_path: str = ".") -> dict: """Scan project for dependencies across all supported languages""" # Auto-detect language(s) and parse dependencies @mcp_tool async def get_package_docs(self, package_name: str, language: str = None, query: str = None) -> str: """Get documentation for package in specified or detected language""" # Route to appropriate language ecosystem @mcp_tool async def analyze_cross_language_project(self, project_path: str = ".") -> dict: """Analyze multi-language projects (e.g., Python backend + Node.js frontend)""" # Detect and analyze multiple ecosystems in single project ``` ### Language Detection Strategy ```python class ProjectLanguageDetector: """Auto-detect programming languages used in a project""" DETECTION_RULES = { "python": ["pyproject.toml", "requirements.txt", "setup.py", "Pipfile"], "node": ["package.json", "yarn.lock", "package-lock.json"], "dotnet": ["*.csproj", "*.sln", "packages.config"], "java": ["pom.xml", "build.gradle", "ivy.xml"], "go": ["go.mod", "go.sum"], "rust": ["Cargo.toml", "Cargo.lock"], } def detect_languages(self, project_path: Path) -> List[str]: """Return list of detected languages in priority order""" ``` ## Cross-Language Features ### Multi-Language Projects - **Frontend + Backend**: Node.js + Python/Java/.NET - **Microservices**: Multiple languages in single repository - **Build Tools**: Language-agnostic tools (Docker, Make, etc.) ### Universal Documentation Aggregation - Cross-reference related packages across languages - Language ecosystem comparison and migration guides - Universal dependency vulnerability scanning ### Performance Considerations - Language-specific caching strategies - Concurrent multi-language analysis - Incremental parsing for large multi-language projects ## Testing Strategy ### Unit Tests - Language-specific parser testing with real projects - Documentation fetcher validation - Cross-language project detection ### Integration Tests - Multi-language project analysis - Performance benchmarking across ecosystems - Cache behavior with multiple languages ### Real-World Validation - Popular open-source projects in each language - Enterprise project scenarios - Performance at scale testing ## Deployment and Rollout ### Feature Flags - Per-language ecosystem enable/disable - Gradual rollout to prevent system overload - A/B testing for language-specific features ### Monitoring - Language-specific success rates and performance - Cross-language usage analytics - Error tracking per ecosystem ### Documentation - Language-specific setup guides - Cross-language project examples - Migration guides from language-specific tools This multi-language expansion will position AutoDocs as the universal documentation intelligence platform for modern development teams working across diverse technology stacks.

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/bradleyfay/autodoc-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server