# AutoDocs MCP Server - Project Index
**Project Type**: Core Product
**Status**: β
Phase 4 Complete - Production Ready
**Priority**: High - Maintenance & Enhancement Mode
**Owner**: Development Team
## Quick Navigation
### Current Work
- π [Current Priorities](active/current_priorities.md) - Active maintenance and enhancement tasks
- π§ [Technical Debt](active/technical_debt.md) - Known issues and code quality improvements
- π [Monthly Reviews](active/monthly_review_2025_08_09.md) - Regular progress assessments
### Planning & Reference
- ποΈ [System Architecture](reference/autodocs_mcp_spec.md) - Complete technical specification
- π [Release Status](reference/RELEASE_VALIDATION_STATUS.md) - Production readiness validation
- πΊοΈ [Future Roadmap](expansion/roadmap.md) - Long-term vision and plans
### Development History
- π [Completed Phases](phases/) - Development milestone history
- [Phase 3: Network Resilience](phases/phase_3_network_resilience/)
- [Phase 4: Dependency Context](phases/phase_4_dependency_context/)
- [Pre-Release v0.3](phases/pre_release_v0.3/)
- π [Archived Documents](archived/) - Historical planning documents
## Project Overview
### Purpose
AutoDocs MCP Server automatically provides AI assistants with contextual, version-specific documentation for Python project dependencies, eliminating manual package documentation lookup and providing more accurate AI coding assistance.
### Scope
- **Core Functionality**: MCP server with 8 comprehensive tools for dependency analysis and documentation
- **AI Integration**: Optimized for Claude Code, Cursor, and other MCP-compatible AI assistants
- **Production Ready**: Full async architecture with health checks, monitoring, and security
- **Phase 4 Features**: Smart dependency context with token management and prioritization
### Key Deliverables
- [x] **Core MCP Server** - FastMCP-based server with stdio protocol
- [x] **8 MCP Tools** - Comprehensive dependency and documentation toolset
- [x] **Network Resilience** - Circuit breakers, retry logic, graceful degradation
- [x] **Smart Context** - AI-optimized dependency context with token budgeting
- [x] **Production Features** - Health checks, metrics, security validation
- [x] **Documentation** - Complete API docs, integration guides, architecture specs
### Success Metrics
- β
**Feature Completeness**: 8/8 MCP tools implemented and tested
- β
**Test Coverage**: >95% with comprehensive pytest suite
- β
**Production Readiness**: Health checks, metrics, security validation
- β
**Performance**: <2s average response time, concurrent request handling
- β
**Integration Success**: Working with Claude Code, configurable for other clients
## Current Status
### Phase: Maintenance & Enhancement
**Start Date**: August 2025
**Focus**: Technical debt resolution, performance optimization, minor feature additions
### Recent Achievements
- β
Completed Phase 4: Dependency Context with smart scoping
- β
Implemented comprehensive error handling and network resilience
- β
Added production monitoring with health checks and metrics
- β
Established robust testing infrastructure with 95%+ coverage
- β
Published to PyPI with automated deployment pipeline
### Next Milestones
- [ ] **Technical Debt Resolution** - Address identified code quality issues - Target: September 2025
- [ ] **Performance Optimization** - Cache improvements and response time optimization - Target: October 2025
- [ ] **v0.5.0 Release** - Minor enhancements and stability improvements - Target: November 2025
## Technical Architecture
### Core Components
- **MCP Server (main.py)**: FastMCP server with async lifecycle management
- **Core Services**: Dependency parsing, version resolution, documentation fetching
- **Context System**: Phase 4 smart dependency context with token management
- **Network Layer**: HTTP client with resilience patterns and connection pooling
- **Caching System**: High-performance JSON-based caching with version keys
### Key Technical Decisions
- **MCP Protocol**: stdio transport for maximum compatibility
- **Async Architecture**: Full async/await for scalability and performance
- **Version-Based Caching**: Immutable cache keys for reliability
- **Graceful Degradation**: Continues processing with partial failures
- **Security-First**: Input validation and secure error handling
### Integration Points
- **PyPI API**: `https://pypi.org/pypi/{package_name}/json` for package metadata
- **MCP Clients**: Claude Code (primary), Cursor, other MCP-compatible tools
- **File System**: pyproject.toml parsing for dependency discovery
- **Cache Storage**: `~/.cache/autodoc-mcp/` for documentation persistence
## Team & Resources
### Core Team
- **Lead Developer**: Primary architecture and implementation responsibility
- **Testing Lead**: Quality assurance and test infrastructure
- **DevOps Engineer**: Deployment pipelines and monitoring setup
### Current Resource Allocation
- **Maintenance**: 60% - Bug fixes, security updates, dependency updates
- **Enhancement**: 30% - Performance improvements, minor features
- **Technical Debt**: 10% - Code quality and architecture improvements
### Dependencies
- **FastMCP Framework**: Core MCP server functionality - Stable
- **PyPI API**: Package metadata source - External dependency
- **HTTP Infrastructure**: httpx, connection pooling - Well maintained
## Development Workflow
### Version Management
- **Current Version**: v0.4.2 (Production)
- **Versioning**: Semantic versioning with conventional commits
- **Release Process**: Release branches β PyPI deployment β Git tags
### Quality Assurance
- **Testing**: pytest ecosystem with comprehensive coverage
- **Code Quality**: Ruff linting, MyPy type checking, pre-commit hooks
- **Performance**: Response time monitoring, memory usage tracking
- **Security**: Input validation, error sanitization, dependency scanning
### Deployment
- **Environment**: Production deployment via PyPI
- **Monitoring**: Health checks, metrics collection, error tracking
- **Configuration**: Environment variables, user-configurable settings
## Risk Assessment
### Current Risks
| Risk | Probability | Impact | Mitigation |
|------|-------------|--------|------------|
| PyPI API Changes | Low | Medium | Version pinning, API monitoring |
| Network Outages | Medium | Low | Circuit breakers, graceful degradation |
| Cache Corruption | Low | Medium | Validation, automatic cleanup |
### Risk Mitigation
- **Network Resilience**: Comprehensive retry logic and circuit breakers
- **Data Validation**: Input sanitization and error recovery
- **Monitoring**: Health checks and performance metrics
- **Backup Plans**: Graceful degradation and fallback strategies
## Future Vision
### Expansion Opportunities
- **Multi-Language Support**: Extend beyond Python to JavaScript, Rust, etc.
- **Enhanced Context**: Semantic search, documentation quality scoring
- **Enterprise Features**: Authentication, multi-tenancy, advanced caching
- **AI Optimization**: Custom context templates, relevance ranking
### Strategic Goals
- **Market Leadership**: Become the standard for AI development documentation assistance
- **Ecosystem Integration**: Deep integration with major AI development platforms
- **Performance Excellence**: Sub-second response times with high reliability
- **Community Growth**: Open source community and contribution ecosystem
---
## Getting Started
### For Developers
1. **Current Work**: Check [active/current_priorities.md](active/current_priorities.md)
2. **Technical Context**: Review [reference/autodocs_mcp_spec.md](reference/autodocs_mcp_spec.md)
3. **Testing**: Run `uv run pytest` for comprehensive test suite
### For Users
1. **Installation**: `uv sync` or `pip install -e .`
2. **Integration**: See CLAUDE.md for MCP server setup
3. **Usage**: Use MCP tools in Claude Code or other compatible clients
### For Stakeholders
1. **Status Updates**: Regular updates in [active/monthly_review_*.md](active/)
2. **Roadmap**: Long-term plans in [expansion/roadmap.md](expansion/roadmap.md)
3. **Architecture**: System design in [reference/](reference/)
---
*Project established: 2025*
*Phase 4 completed: August 2025*
*Status last updated: August 11, 2025*