Skip to main content
Glama
PROJECT_INDEX.mdβ€’8.28 kB
# AutoDocs MCP Server - Project Index **Project Type**: Core Product **Status**: βœ… Phase 4 Complete - Production Ready **Priority**: High - Maintenance & Enhancement Mode **Owner**: Development Team ## Quick Navigation ### Current Work - πŸ“‹ [Current Priorities](active/current_priorities.md) - Active maintenance and enhancement tasks - πŸ”§ [Technical Debt](active/technical_debt.md) - Known issues and code quality improvements - πŸ“Š [Monthly Reviews](active/monthly_review_2025_08_09.md) - Regular progress assessments ### Planning & Reference - πŸ—οΈ [System Architecture](reference/autodocs_mcp_spec.md) - Complete technical specification - πŸ“ˆ [Release Status](reference/RELEASE_VALIDATION_STATUS.md) - Production readiness validation - πŸ—ΊοΈ [Future Roadmap](expansion/roadmap.md) - Long-term vision and plans ### Development History - πŸ“š [Completed Phases](phases/) - Development milestone history - [Phase 3: Network Resilience](phases/phase_3_network_resilience/) - [Phase 4: Dependency Context](phases/phase_4_dependency_context/) - [Pre-Release v0.3](phases/pre_release_v0.3/) - πŸ“– [Archived Documents](archived/) - Historical planning documents ## Project Overview ### Purpose AutoDocs MCP Server automatically provides AI assistants with contextual, version-specific documentation for Python project dependencies, eliminating manual package documentation lookup and providing more accurate AI coding assistance. ### Scope - **Core Functionality**: MCP server with 8 comprehensive tools for dependency analysis and documentation - **AI Integration**: Optimized for Claude Code, Cursor, and other MCP-compatible AI assistants - **Production Ready**: Full async architecture with health checks, monitoring, and security - **Phase 4 Features**: Smart dependency context with token management and prioritization ### Key Deliverables - [x] **Core MCP Server** - FastMCP-based server with stdio protocol - [x] **8 MCP Tools** - Comprehensive dependency and documentation toolset - [x] **Network Resilience** - Circuit breakers, retry logic, graceful degradation - [x] **Smart Context** - AI-optimized dependency context with token budgeting - [x] **Production Features** - Health checks, metrics, security validation - [x] **Documentation** - Complete API docs, integration guides, architecture specs ### Success Metrics - βœ… **Feature Completeness**: 8/8 MCP tools implemented and tested - βœ… **Test Coverage**: >95% with comprehensive pytest suite - βœ… **Production Readiness**: Health checks, metrics, security validation - βœ… **Performance**: <2s average response time, concurrent request handling - βœ… **Integration Success**: Working with Claude Code, configurable for other clients ## Current Status ### Phase: Maintenance & Enhancement **Start Date**: August 2025 **Focus**: Technical debt resolution, performance optimization, minor feature additions ### Recent Achievements - βœ… Completed Phase 4: Dependency Context with smart scoping - βœ… Implemented comprehensive error handling and network resilience - βœ… Added production monitoring with health checks and metrics - βœ… Established robust testing infrastructure with 95%+ coverage - βœ… Published to PyPI with automated deployment pipeline ### Next Milestones - [ ] **Technical Debt Resolution** - Address identified code quality issues - Target: September 2025 - [ ] **Performance Optimization** - Cache improvements and response time optimization - Target: October 2025 - [ ] **v0.5.0 Release** - Minor enhancements and stability improvements - Target: November 2025 ## Technical Architecture ### Core Components - **MCP Server (main.py)**: FastMCP server with async lifecycle management - **Core Services**: Dependency parsing, version resolution, documentation fetching - **Context System**: Phase 4 smart dependency context with token management - **Network Layer**: HTTP client with resilience patterns and connection pooling - **Caching System**: High-performance JSON-based caching with version keys ### Key Technical Decisions - **MCP Protocol**: stdio transport for maximum compatibility - **Async Architecture**: Full async/await for scalability and performance - **Version-Based Caching**: Immutable cache keys for reliability - **Graceful Degradation**: Continues processing with partial failures - **Security-First**: Input validation and secure error handling ### Integration Points - **PyPI API**: `https://pypi.org/pypi/{package_name}/json` for package metadata - **MCP Clients**: Claude Code (primary), Cursor, other MCP-compatible tools - **File System**: pyproject.toml parsing for dependency discovery - **Cache Storage**: `~/.cache/autodoc-mcp/` for documentation persistence ## Team & Resources ### Core Team - **Lead Developer**: Primary architecture and implementation responsibility - **Testing Lead**: Quality assurance and test infrastructure - **DevOps Engineer**: Deployment pipelines and monitoring setup ### Current Resource Allocation - **Maintenance**: 60% - Bug fixes, security updates, dependency updates - **Enhancement**: 30% - Performance improvements, minor features - **Technical Debt**: 10% - Code quality and architecture improvements ### Dependencies - **FastMCP Framework**: Core MCP server functionality - Stable - **PyPI API**: Package metadata source - External dependency - **HTTP Infrastructure**: httpx, connection pooling - Well maintained ## Development Workflow ### Version Management - **Current Version**: v0.4.2 (Production) - **Versioning**: Semantic versioning with conventional commits - **Release Process**: Release branches β†’ PyPI deployment β†’ Git tags ### Quality Assurance - **Testing**: pytest ecosystem with comprehensive coverage - **Code Quality**: Ruff linting, MyPy type checking, pre-commit hooks - **Performance**: Response time monitoring, memory usage tracking - **Security**: Input validation, error sanitization, dependency scanning ### Deployment - **Environment**: Production deployment via PyPI - **Monitoring**: Health checks, metrics collection, error tracking - **Configuration**: Environment variables, user-configurable settings ## Risk Assessment ### Current Risks | Risk | Probability | Impact | Mitigation | |------|-------------|--------|------------| | PyPI API Changes | Low | Medium | Version pinning, API monitoring | | Network Outages | Medium | Low | Circuit breakers, graceful degradation | | Cache Corruption | Low | Medium | Validation, automatic cleanup | ### Risk Mitigation - **Network Resilience**: Comprehensive retry logic and circuit breakers - **Data Validation**: Input sanitization and error recovery - **Monitoring**: Health checks and performance metrics - **Backup Plans**: Graceful degradation and fallback strategies ## Future Vision ### Expansion Opportunities - **Multi-Language Support**: Extend beyond Python to JavaScript, Rust, etc. - **Enhanced Context**: Semantic search, documentation quality scoring - **Enterprise Features**: Authentication, multi-tenancy, advanced caching - **AI Optimization**: Custom context templates, relevance ranking ### Strategic Goals - **Market Leadership**: Become the standard for AI development documentation assistance - **Ecosystem Integration**: Deep integration with major AI development platforms - **Performance Excellence**: Sub-second response times with high reliability - **Community Growth**: Open source community and contribution ecosystem --- ## Getting Started ### For Developers 1. **Current Work**: Check [active/current_priorities.md](active/current_priorities.md) 2. **Technical Context**: Review [reference/autodocs_mcp_spec.md](reference/autodocs_mcp_spec.md) 3. **Testing**: Run `uv run pytest` for comprehensive test suite ### For Users 1. **Installation**: `uv sync` or `pip install -e .` 2. **Integration**: See CLAUDE.md for MCP server setup 3. **Usage**: Use MCP tools in Claude Code or other compatible clients ### For Stakeholders 1. **Status Updates**: Regular updates in [active/monthly_review_*.md](active/) 2. **Roadmap**: Long-term plans in [expansion/roadmap.md](expansion/roadmap.md) 3. **Architecture**: System design in [reference/](reference/) --- *Project established: 2025* *Phase 4 completed: August 2025* *Status last updated: August 11, 2025*

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/bradleyfay/autodoc-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server