Skip to main content
Glama
PROJECT_COORDINATION.mdโ€ข11.8 kB
# Project Coordination & Integration **Purpose**: How projects coordinate and share context in an AI agent ecosystem **Audience**: AI agents working across multiple projects **Updated**: August 11, 2025 ## ๐Ÿค– Agent-Based Project Coordination ### Coordination Philosophy In an AI agent-driven development environment, coordination happens through: - **Shared Context**: Common knowledge accessible to all agents - **Clear Boundaries**: Well-defined project responsibilities and interfaces - **Integration Protocols**: Standardized ways for projects to interact - **Autonomous Operation**: Agents can work independently while maintaining consistency ### Context vs Resource Management Unlike human teams that need resource allocation and scheduling, AI agents need: - **Context Clarity**: What information belongs to which project - **Integration Points**: How projects connect and share functionality - **Consistent Standards**: Shared approaches across all projects - **Error Handling**: Graceful behavior when cross-project dependencies fail --- ## ๐Ÿ“Š Project Coordination Matrix ### Current Project Relationships | Integration Type | AutoDocs MCP | Documentation Site | Task Graph System | |------------------|-------------|-------------------|-------------------| | **Provides Context To** | Documentation Site (technical examples) | - | - | | **Receives Context From** | - | AutoDocs MCP (showcased examples) | AutoDocs MCP (MCP expertise) | | **Shared Standards** | All cross-project standards | All cross-project standards | All cross-project standards | | **Technology Overlap** | Python, MCP, Testing | Web, Documentation | Python, AI, Research | ### Integration Points #### AutoDocs MCP โ†’ Documentation Site - **Content Source**: Technical examples and architecture patterns - **API Documentation**: MCP tool schemas and usage examples - **Success Stories**: Production use cases and performance data - **Integration Method**: Documentation references, code examples #### AutoDocs MCP โ†’ Task Graph System - **MCP Expertise**: Protocol implementation patterns and best practices - **Architecture Patterns**: Async design, error handling, testing approaches - **Production Learnings**: Reliability patterns and monitoring approaches - **Integration Method**: Shared architectural knowledge, design patterns #### Documentation Site โ† Task Graph System - **Research Showcase**: May document research findings and prototypes - **Architecture Documentation**: System design and agent coordination patterns - **Community Engagement**: Research progress and community involvement - **Integration Method**: Future documentation content, research visibility --- ## ๐Ÿ”„ Context Sharing Protocols ### Shared Context Categories #### Development Standards (All Projects) **Location**: `cross-project/shared_standards.md` **Content**: Code quality, testing patterns, documentation standards **Access Pattern**: All agents reference these standards for consistency ```python # Example: Shared testing pattern def test_feature_with_standard_pattern(mocker): """All projects use consistent testing patterns""" # Arrange: Standard setup pattern mock_service = mocker.patch("module.service") # Act: Execute behavior result = execute_feature() # Assert: Verify with clear expectations assert result.success is True mock_service.assert_called_once() ``` #### Technology Stack (All Projects) **Location**: `cross-project/technology_decisions.md` **Content**: Python 3.12+, uv, pytest, Ruff, MyPy, FastMCP **Access Pattern**: Agents apply consistent technology choices #### Architecture Patterns (Reusable Across Projects) **Location**: `cross-project/ARCHITECTURE_OVERVIEW.md` **Content**: Async patterns, error handling, MCP integration, health checks **Access Pattern**: Agents reuse proven architectural solutions ### Project-Specific Context #### AutoDocs MCP Context **Location**: `projects/autodocs-mcp/` **Unique Knowledge**: - PyPI API integration specifics - MCP tool implementation details - Production monitoring and caching strategies - Dependency resolution algorithms #### Documentation Site Context **Location**: `projects/documentation-site/` **Unique Knowledge**: - Content strategy and information architecture - Static site generation workflows - User experience and content optimization - GitHub Pages deployment patterns #### Task Graph System Context **Location**: `projects/task-graph-system/` **Unique Knowledge**: - Multi-agent coordination research - AI agent communication protocols - Research methodology and experimental design - Academic literature and state-of-the-art analysis --- ## ๐Ÿ”— Integration Protocols ### Cross-Project Information Flow #### Documentation Integration Protocol ```markdown # How projects share documentation content 1. AutoDocs MCP maintains technical specifications 2. Documentation Site references and showcases AutoDocs capabilities 3. Task Graph System may contribute research documentation 4. All projects follow shared documentation standards ``` #### Code Sharing Protocol ```python # How projects share code patterns # Each project maintains its own codebase # Shared patterns documented in cross-project/ # No direct code dependencies between projects # Integration through documentation and standards ``` #### Standards Evolution Protocol ```yaml # How standards evolve across projects standards_evolution: proposal: "Any agent/project can propose standard changes" discussion: "Document rationale and impact analysis" implementation: "Apply consistently across all projects" documentation: "Update cross-project documentation" ``` ### Dependency Management #### External Dependencies - **AutoDocs MCP**: PyPI API, MCP protocol implementations - **Documentation Site**: GitHub Pages, static site generators - **Task Graph System**: AI/ML libraries, research frameworks - **All Projects**: Python ecosystem, development tools #### Internal Dependencies - **No Direct Dependencies**: Projects are independently deployable - **Shared Standards**: Common development and quality standards - **Documentation References**: Projects reference each other's examples - **Knowledge Sharing**: Architectural patterns and lessons learned --- ## ๐ŸŽฏ Agent Coordination Patterns ### Context Access for Agents #### Working on Single Project ```python # Agent working on AutoDocs MCP project def agent_single_project_workflow(): # 1. Read project-specific context project_context = read_file("projects/autodocs-mcp/PROJECT_INDEX.md") # 2. Access current priorities current_work = read_file("projects/autodocs-mcp/active/current_priorities.md") # 3. Apply shared standards standards = read_file("cross-project/shared_standards.md") # 4. Work within project boundaries return apply_standards_to_project_work(project_context, standards) ``` #### Working Across Multiple Projects ```python # Agent working across projects (e.g., updating shared standards) def agent_cross_project_workflow(): # 1. Read portfolio overview portfolio = read_file("PLANNING_INDEX.md") # 2. Understand project relationships coordination = read_file("cross-project/PROJECT_COORDINATION.md") # 3. Apply changes consistently for project in get_all_projects(): apply_consistent_change(project, change_specification) # 4. Update cross-project documentation update_shared_documentation(change_specification) ``` ### Error Handling in Coordination #### Graceful Degradation Between Projects ```python # How agents handle cross-project failures async def get_documentation_content(): """Get content for documentation site""" try: # Prefer live AutoDocs examples examples = await get_autodocs_examples() except AutoDocsUnavailable: # Fall back to cached/static examples examples = get_cached_examples() return format_documentation_with_examples(examples) ``` #### Context Inconsistency Handling ```python # How agents handle inconsistent cross-project context def validate_cross_project_consistency(): """Ensure shared standards are applied consistently""" inconsistencies = [] for project in get_all_projects(): project_standards = extract_standards_usage(project) shared_standards = load_shared_standards() if not standards_match(project_standards, shared_standards): inconsistencies.append({ "project": project.name, "issue": "Standards mismatch", "resolution": "Update project to match shared standards" }) return inconsistencies ``` --- ## ๐Ÿ“ˆ Coordination Evolution ### Adding New Projects #### Standard Onboarding Process 1. **Create Project Structure**: Use `templates/PROJECT_TEMPLATE/` 2. **Apply Shared Standards**: Inherit all cross-project standards 3. **Define Integration Points**: Identify how new project connects with existing ones 4. **Update Coordination Documentation**: Add to this document and portfolio overview 5. **Test Integration**: Ensure agents can work across old and new projects #### Integration Assessment ```python # How to assess new project integration needs def assess_new_project_integration(new_project): return { "shared_standards_applicable": evaluate_standard_applicability(new_project), "technology_stack_alignment": check_technology_compatibility(new_project), "coordination_complexity": estimate_coordination_overhead(new_project), "integration_points": identify_connection_opportunities(new_project) } ``` ### Coordination Optimization #### Reducing Coordination Overhead - **Clear Boundaries**: Well-defined project responsibilities - **Standard Interfaces**: Consistent patterns for interaction - **Documentation Integration**: Seamless cross-referencing - **Error Isolation**: Failures in one project don't cascade #### Enhancing Cross-Project Benefits - **Knowledge Sharing**: Successful patterns propagate across projects - **Consistent User Experience**: Similar approaches where appropriate - **Reduced Duplication**: Shared solutions for common problems - **Accelerated Development**: New projects benefit from existing patterns --- ## ๐Ÿ”ฎ Future Coordination Enhancements ### Advanced Agent Coordination #### Multi-Agent Scenarios - **Parallel Development**: Multiple agents working on different projects simultaneously - **Cross-Project Features**: Features that span multiple projects - **Coordinated Releases**: Changes that need to be deployed together - **Shared Infrastructure**: Common services used by multiple projects #### Coordination Automation - **Consistency Checking**: Automated validation of cross-project standards - **Change Propagation**: Automatic updates to shared patterns - **Integration Testing**: Cross-project compatibility validation - **Documentation Synchronization**: Automated cross-references and updates ### Scaling Project Portfolio #### Portfolio Growth Patterns - **Horizontal Scaling**: Adding new independent projects - **Vertical Scaling**: Adding complexity within existing projects - **Integration Deepening**: More sophisticated inter-project connections - **Ecosystem Expansion**: External projects and community contributions #### Coordination Architecture Evolution - **Service Mesh**: If projects become distributed services - **Event-Driven Coordination**: Asynchronous project communication - **Centralized Configuration**: Shared configuration management - **Advanced Monitoring**: Cross-project observability and health --- *Project coordination established: August 11, 2025* *Coordination designed for AI agent collaboration and autonomous operation* *Documentation serves as coordination protocol specification*

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/bradleyfay/autodoc-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server