Skip to main content
Glama

Azure AI Agent Service MCP Server

prompts.py4.52 kB
from mcp_foundry.mcp_server import mcp @mcp.prompt(description="A prompt to list the names of all the indices") async def list_all_indices_prompt() -> str: return "List all the indices by name" @mcp.prompt(description="A prompt to retrieve the schema details of all the indices") async def list_all_indices_details_prompt() -> str: return "Show the schema details of all the indexes" @mcp.prompt(description="Get the detail for a specific schema") async def retrieve_index_schema_prompt(index_name: str) -> str: return f"Show the for the {index_name} index" @mcp.prompt(description="Display the contents of a local file") async def fetch_local_file_contents_prompt(file_path: str) -> str: return f"Display the contents of the local file {file_path}" @mcp.prompt(description="Display the contents of a URL") async def fetch_url_contents_prompt(url: str) -> str: return f"Display the contents of the file {url}" @mcp.prompt(description="Creates an index matching the schema of a JSON file (local file or URL)") async def create_index_from_file_analysis_prompt(index_name: str, url: str) -> str: return f"Create an index called '{index_name}' that is compatible with the JSON file contents in the file {url}" @mcp.prompt(description="Updates the index definition for a specific field") async def modify_index_field_definition_prompt(index_name: str, field_name: str) -> str: return f"Modify the index '{index_name}' and make the {field_name} retrievable, searchable and filterable" @mcp.prompt(description="Removes a specific index") async def remove_index_definition_prompt(index_name: str) -> str: return f"Remove the '{index_name}' index" @mcp.prompt(description="Adds the contents of a JSON file (local file or URL) to the specified index") async def add_document_from_file_analysis_prompt(index_name: str, url: str) -> str: return f"Add a document or documents to the '{index_name}' index using the contents of the file {url}" @mcp.prompt(description="Remove a document from the index") async def remove_document_prompt(index_name: str, id: str) -> str: return f""" Remove a document from the '{index_name}' index matching id '{id}' Remove all documents from the '{index_name}' where the preferred language is French Remove all documents from the '{index_name}' where the sign up date is March 30th 2025 """ @mcp.prompt(description="Queries the index") async def search_index_prompt(index_name: str, id: str) -> str: return f""" - Show all documents from the '{index_name}' index - Show all documents from the '{index_name}' where the preferred language is French - Show all documents from the '{index_name}' where the sign up date is March 30th 2025 """ @mcp.prompt(description="How many documents are in a specific document") async def get_document_count_prompt(index_name: str, id: str) -> str: return f"How many documents are in the '{index_name}' index" @mcp.prompt(description="List the names of the indexers in AI Search") async def list_indexers_prompt() -> str: return f"List the names of the indexers in AI Search" @mcp.prompt(description="Get details about a specific indexer") async def get_indexer_detail_prompt(name: str) -> str: return f"Show the details for the '{name}' indexer" @mcp.prompt(description="Creates and indexer with a datasource") async def create_indexer_datasource_prompt(indexer_name: str, data_source_name: str) -> str: return f"Create an indexer named '{indexer_name}' with field mappings using the data source '{data_source_name}'" @mcp.prompt(description="Creates and indexer with a datasource and skill set") async def create_indexer_datasource_skill_set_prompt(indexer_name: str, data_source_name: str, skill_set_name: str) -> str: return f"Create an indexer named '{indexer_name}' with field mappings using the data source '{data_source_name}' and skillset '{skill_set_name}'" @mcp.prompt(description="List all the data sources and skill sets") async def list_skills_and_data_sources_prompt() -> str: return "List all the skill sets and data sources" @mcp.prompt(description="Show details for a specific data source") async def get_data_source_details_prompt(name: str) -> str: return f"Show details for the '{name}' data source" @mcp.prompt(description="Show details for a specific skill set") async def get_skillset_details_prompt(name: str) -> str: return f"Show details for the '{name}' skillset"

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/azure-ai-foundry/mcp-foundry'

If you have feedback or need assistance with the MCP directory API, please join our Discord server