# OnlineGDB MCP Server for C++ Code Execution
A **HTTP-based** Model Context Protocol (MCP) server that enables AI agents to execute C++ code using OnlineGDB's online compiler. Perfect for solving Data Structures and Algorithms (DSA) problems from competitive programming sites like Codeforces, LeetCode, etc.
> **Note**: This server uses HTTP transport instead of STDIO for better reliability and easier integration.
## Features
### Core Functionality
- **Execute C++ Code**: Run C++ code with custom input using OnlineGDB compiler
- **Submit Solutions**: Test complete solutions against multiple test cases
- **Code Optimization**: Analyze code for performance improvements
- **Test Case Generation**: Generate comprehensive test cases for problems
### Agent Capabilities
- **Self-Correction**: Agent can execute code, see errors, and iterate on solutions
- **Multiple Test Cases**: Validate solutions against various inputs
- **Performance Analysis**: Get execution time and memory usage feedback
- **Error Handling**: Detailed compilation and runtime error reporting
## Installation
1. **Clone and Setup**
```bash
git clone <repository-url>
cd onlinegdb-mcp-server
npm install
```
2. **Build the Project**
```bash
npm run build
```
3. **Install Dependencies**
The server requires Puppeteer for browser automation:
```bash
# On Ubuntu/Debian
sudo apt-get update
sudo apt-get install -y wget gnupg ca-certificates procps libxss1
sudo apt-get install -y libgconf-2-4 libxrandr2 libasound2 libpangocairo-1.0-0 libatk1.0-0 libcairo-gobject2 libgtk-3-0 libgdk-pixbuf2.0-0 libxcomposite1 libxcursor1 libxdamage1 libxi6 libxtst6 libnss3 libcups2 libxss1 libxrandr2 libasound2 libpangocairo-1.0-0 libatk1.0-0 libcairo-gobject2 libdrm2 libxkbcommon0 libgtk-3-0
# On macOS (using Homebrew)
brew install chromium
# On Windows
# Puppeteer will download Chromium automatically
```
## Usage
### Starting the Server
```bash
# Build the project first
npm run build
# Start the HTTP MCP server
npm start
```
The server will start on port 3000 (or PORT environment variable) and provide:
- **HTTP MCP Protocol endpoint**: `POST /mcp`
- **REST API endpoints**: `GET /tools/list`, `GET /health`
- **Web interface**: `GET /`
### Available Tools
#### 1. execute_cpp_code
Execute C++ code with optional input:
```json
{
"name": "execute_cpp_code",
"arguments": {
"code": "#include<iostream>\nusing namespace std;\nint main(){\n int n;\n cin >> n;\n cout << n * 2 << endl;\n return 0;\n}",
"input": "5",
"timeLimit": 5
}
}
```
#### 2. submit_solution
Test a complete solution against multiple test cases:
```json
{
"name": "submit_solution",
"arguments": {
"problemName": "Two Sum",
"code": "C++ solution code here",
"testCases": [
{
"input": "4\n2 7 11 15\n9",
"expectedOutput": "0 1"
},
{
"input": "3\n3 2 4\n6",
"expectedOutput": "1 2"
}
],
"functionSignature": "vector<int> twoSum(vector<int>& nums, int target)"
}
}
```
#### 3. optimize_code
Analyze code for performance improvements:
```json
{
"name": "optimize_code",
"arguments": {
"code": "C++ code to analyze",
"constraints": {
"timeComplexity": "O(n log n)",
"spaceComplexity": "O(1)",
"memoryLimit": "256MB"
}
}
}
```
#### 4. generate_test_cases
Generate test cases for a problem:
```json
{
"name": "generate_test_cases",
"arguments": {
"problemDescription": "Find the maximum subarray sum",
"constraints": "1 ≤ n ≤ 10^5, -10^9 ≤ arr[i] ≤ 10^9",
"numTestCases": 5
}
}
```
## Integration with AI Agents
### Claude MCP Configuration
Add to your Claude MCP configuration (use HTTP transport instead of STDIO):
**Option 1: HTTP Transport (Recommended)**
```json
{
"mcpServers": {
"onlinegdb-cpp": {
"transport": {
"type": "http",
"url": "http://localhost:3000/mcp"
}
}
}
}
```
**Option 2: Direct HTTP calls in your MCP client**
```javascript
// Make direct HTTP requests to the MCP endpoints
fetch('http://localhost:3000/mcp', {
method: 'POST',
headers: { 'Content-Type': 'application/json' },
body: JSON.stringify({
jsonrpc: "2.0",
id: 1,
method: "tools/list"
})
})
```
### Agent Workflow Example
1. **Problem Analysis**: Agent receives a coding problem
2. **Solution Development**: Agent writes initial C++ solution
3. **Code Execution**: Agent uses `execute_cpp_code` to test basic functionality
4. **Comprehensive Testing**: Agent uses `submit_solution` with multiple test cases
5. **Error Analysis**: If tests fail, agent analyzes errors and iterates
6. **Optimization**: Agent uses `optimize_code` to improve performance
7. **Final Validation**: Agent runs final solution against all test cases
### Example Agent Conversation
```
Human: Solve this problem: Given an array of integers, find two numbers that add up to a target sum.
Agent: I'll solve this step by step using the OnlineGDB MCP server.
First, let me implement a basic two-sum solution:
[Uses execute_cpp_code to test basic logic]
Now let me test it against multiple test cases:
[Uses submit_solution with comprehensive test cases]
The solution passed 4/5 test cases. Let me analyze the failure and optimize:
[Uses optimize_code to identify issues]
[Iterates and re-tests until all test cases pass]
```
## Code Templates
### Basic C++ Template for Competitive Programming
```cpp
#include <iostream>
#include <vector>
#include <algorithm>
#include <string>
#include <map>
#include <set>
#include <queue>
#include <stack>
#include <cmath>
using namespace std;
int main() {
ios_base::sync_with_stdio(false);
cin.tie(NULL);
// Your code here
return 0;
}
```
### Function-Based Template
```cpp
#include <iostream>
#include <vector>
using namespace std;
// Function signature here
vector<int> solve(vector<int>& arr, int target) {
// Implementation
return {};
}
int main() {
ios_base::sync_with_stdio(false);
cin.tie(NULL);
// Input parsing
int n, target;
cin >> n >> target;
vector<int> arr(n);
for(int i = 0; i < n; i++) {
cin >> arr[i];
}
// Call solution function
vector<int> result = solve(arr, target);
// Output formatting
for(int i = 0; i < result.size(); i++) {
cout << result[i];
if(i < result.size() - 1) cout << " ";
}
cout << endl;
return 0;
}
```
## Testing
### Run Comprehensive Tests
```bash
# Start the server in one terminal
npm start
# Run tests in another terminal
node test-final-mcp.js
# Or use the npm script
npm run test:mcp
```
### Manual Testing
```bash
# Test health endpoint
curl http://localhost:3000/health
# Test MCP initialize
curl -X POST http://localhost:3000/mcp \
-H "Content-Type: application/json" \
-d '{"jsonrpc":"2.0","id":1,"method":"initialize","params":{"protocolVersion":"2024-11-05","capabilities":{"tools":{}},"clientInfo":{"name":"test","version":"1.0.0"}}}'
# Test tools list
curl -X POST http://localhost:3000/mcp \
-H "Content-Type: application/json" \
-d '{"jsonrpc":"2.0","id":2,"method":"tools/list"}'
```
## Troubleshooting
### Common Issues
1. **Server won't start**
- Check if port 3000 is already in use
- Set PORT environment variable: `PORT=3001 npm start`
- Ensure dependencies are installed: `npm install`
2. **Puppeteer Installation Fails**
- Ensure you have the required system dependencies
- Try `npm install puppeteer --unsafe-perm=true`
3. **OnlineGDB Not Loading**
- Check internet connection
- OnlineGDB might be temporarily unavailable
- Try increasing timeout limits
4. **Code Execution Timeouts**
- Increase `timeLimit` parameter
- Check for