Skip to main content
Glama

Math-Physics-ML MCP System

PyPI - Math MCP PyPI - Quantum MCP PyPI - Molecular MCP PyPI - Neural MCP Documentation License: MIT

GPU-accelerated Model Context Protocol servers for computational mathematics, physics simulations, and machine learning.

Overview

This system provides 4 specialized MCP servers that bring scientific computing capabilities to AI assistants like Claude:

Server

Description

Tools

Math MCP

Symbolic algebra (SymPy) + numerical computing

14

Quantum MCP

Wave mechanics & Schrodinger simulations

12

Molecular MCP

Classical molecular dynamics

15

Neural MCP

Neural network training & evaluation

16

Key Features:

  • GPU acceleration with automatic CUDA detection (10-100x speedup)

  • Async task support for long-running simulations

  • Cross-MCP workflows via URI-based data sharing

  • Progressive discovery for efficient tool exploration

Quick Start

Run any MCP server directly without installation:

# Run individual servers uvx scicomp-math-mcp uvx scicomp-quantum-mcp uvx scicomp-molecular-mcp uvx scicomp-neural-mcp

Installation with pip/uv

# Install individual servers pip install scicomp-math-mcp pip install scicomp-quantum-mcp pip install scicomp-molecular-mcp pip install scicomp-neural-mcp # Or install all at once pip install scicomp-math-mcp scicomp-quantum-mcp scicomp-molecular-mcp scicomp-neural-mcp # With GPU support (requires CUDA) pip install scicomp-math-mcp[gpu] scicomp-quantum-mcp[gpu] scicomp-molecular-mcp[gpu] scicomp-neural-mcp[gpu]

Configuration

Claude Desktop

Add to your Claude Desktop configuration file:

macOS: ~/Library/Application Support/Claude/claude_desktop_config.json Windows: %APPDATA%\Claude\claude_desktop_config.json

{ "mcpServers": { "math-mcp": { "command": "uvx", "args": ["scicomp-math-mcp"] }, "quantum-mcp": { "command": "uvx", "args": ["scicomp-quantum-mcp"] }, "molecular-mcp": { "command": "uvx", "args": ["scicomp-molecular-mcp"] }, "neural-mcp": { "command": "uvx", "args": ["scicomp-neural-mcp"] } } }

Claude Code

Add to your project's .mcp.json:

{ "mcpServers": { "math-mcp": { "command": "uvx", "args": ["scicomp-math-mcp"] }, "quantum-mcp": { "command": "uvx", "args": ["scicomp-quantum-mcp"] } } }

Or configure globally in ~/.claude/settings.json.

Usage Examples

Math MCP

# Solve equations symbolically symbolic_solve(equations="x**3 - 6*x**2 + 11*x - 6") # Result: [1, 2, 3] # Compute derivatives symbolic_diff(expression="sin(x)*exp(-x**2)", variable="x") # Result: cos(x)*exp(-x**2) - 2*x*sin(x)*exp(-x**2) # GPU-accelerated matrix operations result = matrix_multiply(a=matrix_a, b=matrix_b, use_gpu=True)

Quantum MCP

# Create a Gaussian wave packet psi = create_gaussian_wavepacket( grid_size=[256], position=[64], momentum=[2.0], width=5.0 ) # Solve time-dependent Schrodinger equation simulation = solve_schrodinger( potential=barrier_potential, initial_state=psi, time_steps=1000, dt=0.1, use_gpu=True )

Molecular MCP

# Create particle system system = create_particles( n_particles=1000, box_size=[20, 20, 20], temperature=1.5 ) # Add Lennard-Jones potential add_potential(system_id=system, potential_type="lennard_jones") # Run MD simulation trajectory = run_nvt(system_id=system, n_steps=100000, temperature=1.0) # Analyze diffusion msd = compute_msd(trajectory_id=trajectory)

Neural MCP

# Define model model = define_model(architecture="resnet18", num_classes=10, pretrained=True) # Load dataset dataset = load_dataset(dataset_name="CIFAR10", split="train") # Train experiment = train_model( model_id=model, dataset_id=dataset, epochs=50, batch_size=128, use_gpu=True ) # Export for deployment export_model(model_id=model, format="onnx", output_path="model.onnx")

Documentation

Full documentation is available at andylbrummer.github.io/math-mcp

Development

# Clone the repository git clone https://github.com/andylbrummer/math-mcp.git cd math-mcp # Install dependencies uv sync --all-extras # Run tests uv run pytest -m "not gpu" # CPU only uv run pytest # All tests (requires CUDA) # Run with coverage uv run pytest --cov=shared --cov=servers

See CONTRIBUTING.md for development guidelines.

Performance

GPU acceleration provides significant speedups for compute-intensive operations:

MCP

Operation

CPU

GPU

Speedup

Math

Matrix multiply (4096x4096)

2.1s

35ms

60x

Quantum

2D Schrodinger (512x512, 1000 steps)

2h

2min

60x

Molecular

MD (100k particles, 10k steps)

1h

30s

120x

Neural

ResNet18 training (1 epoch)

45min

30s

90x

Architecture

For technical details about the system architecture, see ARCHITECTURE.md.

License

MIT License - see LICENSE for details.

Contributing

Contributions are welcome! Please see CONTRIBUTING.md for guidelines.

-
security - not tested
A
license - permissive license
-
quality - not tested

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/andylbrummer/math-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server