Skip to main content
Glama

MCP Content Curation Server

README.md•4.16 kB
# šŸŽ“ MCP Content Curation Server [![Node.js](https://img.shields.io/badge/Node.js-18+-green.svg)](https://nodejs.org/) [![TypeScript](https://img.shields.io/badge/TypeScript-5.0+-blue.svg)](https://www.typescriptlang.org/) [![OpenAI](https://img.shields.io/badge/OpenAI-GPT--4-orange.svg)](https://openai.com/) [![License](https://img.shields.io/badge/License-MIT-yellow.svg)](LICENSE) A **Model Context Protocol (MCP)** server for intelligent course content curation powered by **GPT-4**. This server provides AI-driven tools to categorize, tag, and improve educational content. ## ✨ Features - **šŸ—‚ļø Smart Categorization**: AI-powered category suggestions for course content - **šŸ·ļø Intelligent Tagging**: Context-aware tag recommendations using GPT-4 - **✨ Content Optimization**: Improve titles and descriptions following best practices - **šŸ”Œ MCP Integration**: Seamless integration with Claude Desktop and other MCP clients ## šŸš€ Quick Start ### Prerequisites - Node.js 18+ - OpenAI API key ### Installation 1. **Clone the repository** ```bash git clone https://github.com/yourusername/mcp-content-curation-server.git cd mcp-content-curation-server ``` 2. **Install dependencies** ```bash npm install ``` 3. **Configure environment** ```bash cp .env.example .env # Edit .env and add your OpenAI API key ``` 4. **Run the server** ```bash # Development mode npm run dev # Production mode npm run build npm start ``` ## šŸ”§ OpenAI Setup 1. Get your API key from [OpenAI Platform](https://platform.openai.com/api-keys) 2. Add it to your `.env` file: ```bash OPENAI_API_KEY=sk-your-actual-api-key-here ``` ## šŸ–„ļø Claude Desktop Integration Update your `claude_desktop_config.json`: **Development Mode:** ```json { "mcpServers": { "content-curation": { "command": "npx", "args": ["tsx", "/path/to/your/project/src/server.ts"], "cwd": "/path/to/your/project", "env": { "NODE_ENV": "development" } } } } ``` **Production Mode:** ```json { "mcpServers": { "content-curation": { "command": "node", "args": ["/path/to/your/project/dist/server.js"], "cwd": "/path/to/your/project", "env": { "NODE_ENV": "production" } } } } ``` ## šŸ› ļø Available Tools ### 1. `suggest_category` Suggests the most appropriate category for course content. **Input:** ```json { "title": "Python for Data Science", "description": "Learn data analysis with pandas and matplotlib" } ``` ### 2. `suggest_tags` Recommends relevant tags based on course content. **Input:** ```json { "title": "Digital Marketing Fundamentals", "description": "Master SEO, Google Ads, and social media marketing" } ``` ### 3. `improve_content` Optimizes titles and descriptions following educational best practices. **Input:** ```json { "title": "JavaScript Basics", "description": "Learn programming fundamentals" } ``` ## šŸ“Š Data Structure The server includes: - **5 main categories**: Technology, Business, Design, Marketing, Analytics - **18 contextual tags**: Organized by subject area - **10 sample courses**: For similarity analysis and training ## šŸ’” Usage Examples ### Categorization ``` Suggest a category for: "Advanced React Hooks" - "Custom hooks and performance optimization in React" ``` ### Tagging ``` What tags would you recommend for: "Machine Learning with Python"? ``` ### Content Improvement ``` Improve this content: Title: "Excel Basics" Description: "Learn spreadsheets" ``` ## šŸ› ļø Development ### Available Scripts - `npm run dev` - Start development server - `npm run build` - Compile TypeScript - `npm start` - Run production server - `npm run debug` - Run diagnostics ### Project Structure ``` src/ ā”œā”€ā”€ server.ts # Main MCP server ā”œā”€ā”€ services/ │ ā”œā”€ā”€ ai.service.ts # OpenAI GPT-4 integration │ └── curation.service.ts # Curation logic ā”œā”€ā”€ data/ │ └── mock-data.ts # Categories, tags, and sample data └── types.ts # TypeScript definitions ```

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/alexandrekumagae/ai-content-categorization-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server