Skip to main content
Glama

MCP Hospital Assistant

by ajay800800
llmClient.js933 B
// Instead of this: import sqlite3 from 'sqlite3'; import path from 'path'; import config from '../config/config.js'; import fs from 'fs-extra'; import axios from 'axios'; // ✅ Use this: const sqlite3 = require('sqlite3'); const path = require('path'); const config = require('../config/config'); const fs = require('fs-extra'); const axios = require('axios'); async function queryLLM(prompt) { try { const response = await axios.post(LLM_API_URL, { model: "google/gemma-3-12b-it", messages: [ { role: "system", content: "You are a helpful assistant." }, { role: "user", content: prompt } ], temperature: 0.7 }); const text = response.data.choices?.[0]?.message?.content || "No response"; return { content: [{ type: 'text', text }] }; } catch (err) { return { content: [{ type: 'text', text: `LLM Error: ${err.message}` }] }; } } module.exports = { queryLLM };

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/ajay800800/doc_mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server