# SlimContext MCP Server
A Model Context Protocol (MCP) server that wraps the [SlimContext](https://www.npmjs.com/package/slimcontext) library, providing AI chat history compression tools for MCP-compatible clients.
## Overview
SlimContext MCP Server exposes two powerful compression strategies as MCP tools:
1. **`trim_messages`** - Token-based compression that removes oldest messages when exceeding token thresholds
2. **`summarize_messages`** - AI-powered compression using OpenAI to create concise summaries
## Installation
```bash
npm install -g slimcontext-mcp-server
# or
pnpm add -g slimcontext-mcp-server
```
## Development
```bash
# Clone and setup
git clone <repository>
cd slimcontext-mcp-server
pnpm install
# Build
pnpm build
# Run in development
pnpm dev
# Type checking
pnpm typecheck
```
## Configuration
### MCP Client Setup
Add to your MCP client configuration:
```json
{
"mcpServers": {
"slimcontext": {
"command": "npx",
"args": ["-y", "slimcontext-mcp-server"]
}
}
}
```
### Environment Variables
- `OPENAI_API_KEY`: OpenAI API key for summarization (optional, can be passed as tool parameter)
## Tools
### trim_messages
Compresses chat history using token-based trimming strategy.
**Parameters:**
- `messages` (required): Array of chat messages
- `maxModelTokens` (optional): Maximum model token context window (default: 8192)
- `thresholdPercent` (optional): Percentage threshold to trigger compression 0-1 (default: 0.7)
- `minRecentMessages` (optional): Minimum recent messages to preserve (default: 2)
**Example:**
```json
{
"messages": [
{ "role": "system", "content": "You are a helpful assistant." },
{ "role": "user", "content": "Hello!" },
{ "role": "assistant", "content": "Hi there! How can I help you today?" },
{ "role": "user", "content": "Tell me about AI." }
],
"maxModelTokens": 4000,
"thresholdPercent": 0.8,
"minRecentMessages": 2
}
```
**Response:**
```json
{
"success": true,
"original_message_count": 4,
"compressed_message_count": 3,
"messages_removed": 1,
"compression_ratio": 0.75,
"compressed_messages": [
{ "role": "system", "content": "You are a helpful assistant." },
{ "role": "assistant", "content": "Hi there! How can I help you today?" },
{ "role": "user", "content": "Tell me about AI." }
]
}
```
### summarize_messages
Compresses chat history using AI-powered summarization strategy.
**Parameters:**
- `messages` (required): Array of chat messages
- `maxModelTokens` (optional): Maximum model token context window (default: 8192)
- `thresholdPercent` (optional): Percentage threshold to trigger compression 0-1 (default: 0.7)
- `minRecentMessages` (optional): Minimum recent messages to preserve (default: 4)
- `openaiApiKey` (optional): OpenAI API key (can also use OPENAI_API_KEY env var)
- `openaiModel` (optional): OpenAI model for summarization (default: 'gpt-4o-mini')
- `customPrompt` (optional): Custom summarization prompt
**Example:**
```json
{
"messages": [
{ "role": "system", "content": "You are a helpful assistant." },
{ "role": "user", "content": "I want to build a web scraper." },
{
"role": "assistant",
"content": "I can help you build a web scraper! What programming language would you prefer?"
},
{ "role": "user", "content": "Python please." },
{
"role": "assistant",
"content": "Great choice! For Python web scraping, I recommend using requests and BeautifulSoup..."
},
{ "role": "user", "content": "Can you show me a simple example?" }
],
"maxModelTokens": 4000,
"thresholdPercent": 0.6,
"minRecentMessages": 2,
"openaiModel": "gpt-4o-mini"
}
```
**Response:**
```json
{
"success": true,
"original_message_count": 6,
"compressed_message_count": 4,
"messages_removed": 2,
"summary_generated": true,
"compression_ratio": 0.67,
"compressed_messages": [
{ "role": "system", "content": "You are a helpful assistant." },
{
"role": "system",
"content": "The user expressed interest in building a web scraper and requested help with Python. The assistant recommended using requests and BeautifulSoup libraries for Python web scraping."
},
{
"role": "assistant",
"content": "Great choice! For Python web scraping, I recommend using requests and BeautifulSoup..."
},
{ "role": "user", "content": "Can you show me a simple example?" }
]
}
```
## Message Format
Both tools expect messages in SlimContext format:
```typescript
interface SlimContextMessage {
role: 'system' | 'user' | 'assistant' | 'tool' | 'human';
content: string;
}
```
## Error Handling
All tools return structured error responses:
```json
{
"success": false,
"error": "Error message description",
"error_type": "SlimContextError" | "OpenAIError" | "UnknownError"
}
```
Common error scenarios:
- Missing OpenAI API key for summarization
- Invalid message format
- OpenAI API rate limits or errors
- Invalid parameter values
## Token Estimation
SlimContext uses a simple heuristic for token estimation: `Math.ceil(content.length / 4) + 2`. This provides a reasonable approximation for most use cases. For more accurate token counting, you would need to implement a custom token estimator in your client application.
## Compression Strategies
### Trimming Strategy
- Preserves all system messages
- Preserves the most recent N messages
- Removes oldest non-system messages until under token threshold
- Fast and deterministic
- No external API dependencies
### Summarization Strategy
- Preserves all system messages
- Preserves the most recent N messages
- Summarizes middle portion of conversation using AI
- Creates contextually rich summaries
- Requires OpenAI API access
## License
MIT
## Contributing
1. Fork the repository
2. Create a feature branch
3. Make your changes
4. Add tests for new functionality
5. Submit a pull request
## Related
- [SlimContext](https://www.npmjs.com/package/slimcontext) - The underlying compression library
- [Model Context Protocol](https://modelcontextprotocol.io/) - The protocol specification
- [MCP SDK](https://github.com/modelcontextprotocol/typescript-sdk) - TypeScript SDK for MCP