Skip to main content
Glama
aegntic

Obsidian Elite RAG MCP Server

INSTALL.md7.36 kB
# Installation Guide This guide provides detailed installation instructions for the Obsidian Elite RAG MCP Server. ## Prerequisites ### System Requirements - **Python 3.9+** (3.10+ recommended) - **Docker** and **Docker Compose** - **Git** - **4GB+ RAM** (8GB+ recommended) - **10GB+ free disk space** ### Required Accounts - **OpenAI API key** for embeddings - **Docker Hub account** (for pulling images) ## Installation Options ### Option 1: Quick Install (Recommended) ```bash # Install the package pip install obsidian-elite-rag-mcp # Initialize the system obsidian-elite-rag-cli setup # Start databases obsidian-elite-rag-cli start-databases ``` ### Option 2: Development Install ```bash # Clone the repository git clone https://github.com/aegntic/aegntic-MCP.git cd aegntic-MCP/obsidian-elite-rag # Create virtual environment python -m venv venv source venv/bin/activate # On Windows: venv\Scripts\activate # Install in development mode pip install -e ".[dev]" # Install Graphiti dependencies pip install graphiti-core neo4j py2neo ``` ### Option 3: Docker Install ```bash # Clone the repository git clone https://github.com/aegntic/aegntic-MCP.git cd aegntic-MCP/obsidian-elite-rag # Build Docker image docker build -t obsidian-elite-rag . # Run with Docker Compose docker-compose up -d ``` ## Database Setup ### Automatic Setup (Recommended) ```bash # Start both databases with proper configuration obsidian-elite-rag-cli start-databases ``` ### Manual Setup #### Qdrant Vector Database ```bash # Start Qdrant docker run -d --name qdrant \ -p 6333:6333 \ -p 6334:6334 \ -v $(pwd)/data/qdrant:/qdrant/storage \ qdrant/qdrant:latest # Verify it's running curl http://localhost:6333/collections ``` #### Neo4j Knowledge Graph Database ```bash # Start Neo4j with plugins docker run -d --name neo4j \ -p 7474:7474 \ -p 7687:7687 \ -p 7688:7688 \ -v $(pwd)/data/neo4j:/data \ -v $(pwd)/data/neo4j/logs:/logs \ -v $(pwd)/data/neo4j/import:/var/lib/neo4j/import \ -v $(pwd)/data/neo4j/plugins:/plugins \ --env NEO4J_AUTH=neo4j/password \ --env NEO4J_PLUGINS='["apoc","graph-data-science"]' \ --env NEO4J_dbms_security_procedures_unrestricted=apoc.*,gds.* \ --env NEO4J_dbms_memory_heap_initial__size=512m \ --env NEO4J_dbms_memory_heap_max__size=2G \ --env NEO4J_dbms_memory_pagecache_size=1G \ neo4j:5.14 # Wait for startup (30-60 seconds) # Check status: curl http://localhost:7474 ``` ## Configuration ### Environment Variables Create a `.env` file in your project root: ```bash # Required OPENAI_API_KEY=your-openai-api-key-here # Optional (auto-configured) NEO4J_URI=bolt://localhost:7687 NEO4J_USER=neo4j NEO4J_PASSWORD=password QDRANT_HOST=localhost QDRANT_PORT=6333 # Logging LOG_LEVEL=INFO ``` ### Configuration File The system uses `config/automation-config.yaml`. Key sections: ```yaml knowledge_graph: enabled: true provider: graphiti graphiti: neo4j_uri: bolt://localhost:7687 neo4j_user: neo4j neo4j_password: "password" rag_system: layers: semantic: weight: 0.3 similarity_threshold: 0.7 knowledge_graph: weight: 0.25 max_depth: 4 ``` ## Verification ### Test Database Connections ```bash # Check system status obsidian-elite-rag-cli status /path/to/test/vault # Expected output: # ✅ Vault: /path/to/test/vault (X markdown files) # ✅ Qdrant: Connected (collection 'obsidian_knowledge' exists) # ✅ Neo4j: Connected # ✅ Graphiti: Enabled # 🚀 System ready for RAG operations! ``` ### Test with Sample Vault ```bash # Create a test vault mkdir -p test-vault echo "# Machine Learning Machine learning is a subset of artificial intelligence that focuses on algorithms that can learn from data. ## Key Concepts - Supervised Learning - Unsupervised Learning - Neural Networks - Deep Learning ## Important People - Geoffrey Hinton - Yann LeCun - Yoshua Bengio ## Related Technologies - TensorFlow - PyTorch - Scikit-learn" > test-vault/ml-notes.md # Ingest the test vault obsidian-elite-rag-cli ingest test-vault # Test queries obsidian-elite-rag-cli query "What is machine learning?" test-vault obsidian-elite-rag-cli graph test-vault --entity-query "neural networks" ``` ## MCP Server Setup ### Claude Code Integration 1. **Install Claude Code** (if not already installed) 2. **Configure MCP Server** in `~/.config/claude-code/config.json`: ```json { "mcpServers": { "obsidian-elite-rag": { "command": "obsidian-elite-rag-cli", "args": ["server"], "env": { "OPENAI_API_KEY": "your-openai-api-key" } } } } ``` 3. **Restart Claude Code** 4. **Test the integration**: ``` @obsidian-elite-rag please get the system status for vault /path/to/my/vault @obsidian-elite-rag query "what are the main concepts in my vault?" ``` ### Other MCP Clients The server supports standard MCP protocol and can be used with any MCP-compatible client. ## Troubleshooting ### Common Issues #### 1. Database Connection Errors **Problem**: `Connection failed` errors for Neo4j or Qdrant **Solution**: ```bash # Check if containers are running docker ps # Restart databases docker restart neo4j qdrant # Check logs docker logs neo4j docker logs qdrant ``` #### 2. Import Errors **Problem**: `ModuleNotFoundError: No module named 'graphiti'` **Solution**: ```bash # Install missing dependencies pip install graphiti-core neo4j py2neo # Or reinstall the package pip install --force-reinstall obsidian-elite-rag-mcp ``` #### 3. OpenAI API Errors **Problem**: Authentication errors with OpenAI **Solution**: ```bash # Check API key echo $OPENAI_API_KEY # Set in environment export OPENAI_API_KEY="your-key-here" # Add to .env file echo "OPENAI_API_KEY=your-key-here" >> .env ``` #### 4. Docker Port Conflicts **Problem**: Port already in use errors **Solution**: ```bash # Check what's using the ports lsof -i :6333 # Qdrant lsof -i :7687 # Neo4j # Use different ports docker run -d --name qdrant -p 16333:6333 qdrant/qdrant:latest docker run -d --name neo4j -p 17687:7687 neo4j:5.14 # Update configuration accordingly ``` ### Performance Optimization #### Memory Settings For better performance, adjust Docker memory limits: ```bash # Neo4j memory optimization docker run -d --name neo4j \ --memory=4g \ --env NEO4J_dbms_memory_heap_max__size=3G \ --env NEO4J_dbms_memory_pagecache_size=1G \ neo4j:5.14 ``` #### Concurrent Processing Adjust configuration for faster ingestion: ```yaml processing: parallelism: max_workers: 8 # Increase based on CPU cores batch_processing: true ``` ### Getting Help 1. **Check logs**: `tail -f logs/mcp-server.log` 2. **Run diagnostics**: `obsidian-elite-rag-cli status /path/to/vault` 3. **GitHub Issues**: https://github.com/aegntic/aegntic-MCP/issues 4. **Email support**: research@aegntic.ai ## Next Steps After successful installation: 1. **Ingest your Obsidian vault**: `obsidian-elite-rag-cli ingest /path/to/vault` 2. **Start MCP server**: `obsidian-elite-rag-cli server` 3. **Configure Claude Code**: Add MCP server configuration 4. **Test with queries**: Try different query types and knowledge graph searches 5. **Customize configuration**: Adjust weights and thresholds for your use case For advanced usage and configuration, see the main [README.md](README.md).

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/aegntic/aegntic-MCP'

If you have feedback or need assistance with the MCP directory API, please join our Discord server