Skip to main content
Glama
aegntic

Obsidian Elite RAG MCP Server

CLAUDE.md7 kB
# CLAUDE.md This file provides guidance to Claude Code (claude.ai/code) when working with code in this repository. ## System Overview This is an elite Obsidian RAG (Retrieval-Augmented Generation) system that transforms Obsidian vaults into AI-paired cognitive workflow engines. The system implements multi-layered knowledge architecture with hierarchical context management and automated knowledge graph construction. ## Commands ### Development and Setup ```bash # Initialize new vault with elite structure npm run setup /path/to/your/vault # Start development environment (RAG engine + web interface) npm run dev # Start only the RAG engine npm run dev:rag # Start only the web interface npm run dev:web # Build for production npm run build # Run tests npm run test # Lint code npm run lint ``` ### Database Management ```bash # Start both databases (Qdrant + Neo4j) npm run start:databases # Start Neo4j knowledge graph database npm run start:neo4j # Stop Neo4j database npm run stop:neo4j # Reset Neo4j database (clear all data) npm run reset:neo4j # Stop all databases npm run stop:databases # Setup Graphiti dependencies npm run setup:graphiti ``` ### RAG Engine Operations ```bash # Ingest/update vault content python3 integrations/rag-engine.py --vault /path/to/vault --ingest # Query the RAG system python3 integrations/rag-engine.py --vault /path/to/vault --query "Your question" # Domain-specific query python3 integrations/rag-engine.py --vault /path/to/vault --query "Technical question" --query-type technical # Watch vault for changes and auto-update npm run watch ``` ### Claude Integration ```bash # Query with context from vault ./scripts/claude-context.sh /path/to/vault "Your query" # Project-specific help ./scripts/claude-context.sh /path/to/vault "How to implement X?" "Project Name" # Research assistance ./scripts/claude-context.sh /path/to/vault "Explain concept Y" "" "research" ``` ### Database Operations ```bash # Index vault content npm run index # Query RAG system npm run query ``` ## Architecture ### Core Components **RAG Engine** (`integrations/rag-engine.py`): - Multi-layered retrieval system with 5 distinct layers - Semantic similarity search using OpenAI embeddings - Graph traversal for knowledge expansion - Temporal context management - Domain-specific retrieval strategies - Meta-knowledge layer for knowledge about knowledge **Vector Database**: - Primary: Qdrant (Docker-based) - Alternatives: ChromaDB, FAISS - Collection: `obsidian_knowledge` - Embedding dimension: 1536 (OpenAI) **Knowledge Graph**: - Primary: Neo4j with Graphiti adapter - Backup: NetworkX for basic graph operations - Database: `neo4j` (default) - Entity types: 27+ categories (concepts, people, organizations, technologies, etc.) - Relationship types: 40+ types (implements, uses, depends_on, etc.) **Knowledge Architecture**: - Obsidian vault structure with hierarchical organization - Automated link discovery and relationship mapping - Multi-format content support (Markdown, PDF, DOCX, images) - Tag-based categorization and context management ### Retrieval Layers 1. **L1: Semantic Context** (30% weight) - Vector similarity search with OpenAI embeddings 2. **L2: Knowledge Graph** (25% weight) - Graphiti-powered entity and relationship retrieval 3. **L3: Graph Traversal** (15% weight) - NetworkX-based link traversal 4. **L4: Temporal Context** (15% weight) - Time-based relevance and freshness 5. **L5: Domain Specialization** (15% weight) - Context-aware retrieval 6. **L6: Meta-Knowledge** (remaining weight) - Knowledge about knowledge ### File Structure ``` 00-Core/ # Foundational knowledge and principles 01-Projects/ # Active work and initiatives 02-Research/ # Learning and exploration 03-Workflows/ # Reusable processes 04-AI-Paired/ # Claude Code interactions 05-Resources/ # External references 06-Meta/ # System knowledge 07-Archive/ # Historical data 08-Templates/ # Note structures 09-Links/ # External connections ``` ## Configuration ### Main Configuration - `config/automation-config.yaml` - System-wide settings - Environment variables for API keys and paths - Docker configuration for Qdrant database ### Key Configuration Areas - Automation settings (knowledge processing, context management) - RAG system layer weights and thresholds - Vector database settings - Claude integration parameters - File watching patterns - Performance and security settings ## Development Workflow ### Prerequisites - Docker (for Qdrant vector database and Neo4j) - Python 3.9+ - Node.js 18+ - OpenAI API key - Obsidian (for vault management) ### Setup Process 1. Clone repository and install dependencies 2. Start both databases: ```bash npm run start:databases # Or separately: docker run -d --name qdrant -p 6333:6333 -v $(pwd)/data/qdrant:/qdrant/storage qdrant/qdrant:latest npm run start:neo4j ``` 3. Initialize vault with elite structure 4. Configure environment variables 5. Install Graphiti dependencies: `npm run setup:graphiti` 6. Ingest vault content into RAG system 7. Start development environment ### Testing - Python tests with pytest: `npm run test` - Integration tests for RAG functionality - Performance benchmarks for retrieval speed - Content accuracy validation ## Performance Characteristics - **Retrieval Speed**: <100ms for context-rich queries - **Knowledge Coverage**: 95%+ recall on domain-specific queries - **Context Quality**: Multi-layered, temporally-aware responses - **Automation Coverage**: 80%+ routine knowledge tasks automated - **Entity Recognition**: 90%+ accuracy for concepts, people, organizations - **Relationship Extraction**: 85%+ accuracy for semantic relationships - **Graph Traversal**: <50ms for entity relationship queries up to depth 4 ## Key Technical Decisions - **LangChain Framework**: Unified RAG pipeline with modular components - **Qdrant Vector Database**: High-performance similarity search - **Neo4j + Graphiti**: Advanced knowledge graph with entity-relationship modeling - **NetworkX for Graph Processing**: Backup knowledge relationship mapping - **Async Processing**: Concurrent file watching and content updates - **Hierarchical Context**: Progressive detail revelation in responses - **Multi-modal Content**: Support for text, images, and documents - **Dual-Graph Architecture**: Both Neo4j (structured) and NetworkX (unstructured) support ## Important Files - `integrations/rag-engine.py` - Core RAG implementation with Graphiti integration - `integrations/graphiti_adapter.py` - Graphiti knowledge graph adapter - `config/automation-config.yaml` - System configuration including Graphiti settings - `package.json` - Node.js dependencies and scripts - `requirements.txt` - Python dependencies including Graphiti - `scripts/start-neo4j.sh` - Neo4j database startup script - `scripts/` - Automation and utility scripts - `docs/` - Detailed implementation guides

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/aegntic/aegntic-MCP'

If you have feedback or need assistance with the MCP directory API, please join our Discord server