MCP Crew AI Server

Integrations

  • Provides tools for running, managing and creating CrewAI workflows, enabling multi-agent operations through configuration in YAML files.

  • Enables installation directly from GitHub repository, with the server code hosted on GitHub.

  • Allows installation of the MCP Crew AI server package directly from the Python Package Index.

MCP Crew AI Server

MCP Crew AI Server is a lightweight Python-based server designed to run, manage and create CrewAI workflows. This project leverages the Model Context Protocol (MCP) to communicate with Large Language Models (LLMs) and tools such as Claude Desktop or Cursor IDE, allowing you to orchestrate multi-agent workflows with ease.

Features

  • Automatic Configuration: Automatically loads agent and task configurations from two YAML files (agents.yml and tasks.yml), so you don't need to write custom code for basic setups.
  • Command Line Flexibility: Pass custom paths to your configuration files via command line arguments (--agents and --tasks).
  • Seamless Workflow Execution: Easily run pre-configured workflows through the MCP run_workflow tool.
  • Local Development: Run the server locally in STDIO mode, making it ideal for development and testing.

Installation

There are several ways to install the MCP Crew AI server:

pip install mcp-crew-ai

Option 2: Install from GitHub

pip install git+https://github.com/adam-paterson/mcp-crew-ai.git

Option 3: Clone and Install

git clone https://github.com/adam-paterson/mcp-crew-ai.git cd mcp-crew-ai pip install -e .

Requirements

  • Python 3.11+
  • MCP SDK
  • CrewAI
  • PyYAML

Configuration

  • agents.yml: Define your agents with roles, goals, and backstories.
  • tasks.yml: Define tasks with descriptions, expected outputs, and assign them to agents.

Example agents.yml:

zookeeper: role: Zookeeper goal: Manage zoo operations backstory: > You are a seasoned zookeeper with a passion for wildlife conservation...

Example tasks.yml:

write_stories: description: > Write an engaging zoo update capturing the day's highlights. expected_output: 5 engaging stories agent: zookeeper output_file: zoo_report.md

Usage

Once installed, you can run the MCP CrewAI server using either of these methods:

Standard Python Command

mcp-crew-ai --agents path/to/agents.yml --tasks path/to/tasks.yml

Using UV Execution (uvx)

For a more streamlined experience, you can use the UV execution command:

uvx mcp-crew-ai --agents path/to/agents.yml --tasks path/to/tasks.yml

Or run just the server directly:

uvx mcp-crew-ai-server

This will start the server using default configuration from environment variables.

Command Line Options

  • --agents: Path to the agents YAML file (required)
  • --tasks: Path to the tasks YAML file (required)
  • --topic: The main topic for the crew to work on (default: "Artificial Intelligence")
  • --process: Process type to use (choices: "sequential" or "hierarchical", default: "sequential")
  • --verbose: Enable verbose output
  • --variables: JSON string or path to JSON file with additional variables to replace in YAML files
  • --version: Show version information and exit

Advanced Usage

You can also provide additional variables to be used in your YAML templates:

mcp-crew-ai --agents examples/agents.yml --tasks examples/tasks.yml --topic "Machine Learning" --variables '{"year": 2025, "focus": "deep learning"}'

These variables will replace placeholders in your YAML files. For example, {topic} will be replaced with "Machine Learning" and {year} with "2025".

Contributing

Contributions are welcome! Please open issues or submit pull requests with improvements, bug fixes, or new features.

Licence

This project is licensed under the MIT Licence. See the LICENSE file for details.

Happy workflow orchestration!

-
security - not tested
F
license - not found
-
quality - not tested

A lightweight Python-based server designed to run, manage and create CrewAI workflows using the Model Context Protocol for communicating with LLMs and tools like Claude Desktop or Cursor IDE.

  1. Features
    1. Installation
      1. Option 1: Install from PyPI (Recommended)
      2. Option 2: Install from GitHub
      3. Option 3: Clone and Install
      4. Requirements
    2. Configuration
      1. Usage
        1. Standard Python Command
        2. Using UV Execution (uvx)
        3. Command Line Options
        4. Advanced Usage
      2. Contributing
        1. Licence
          ID: feqw3c8tuz