Skip to main content
Glama

airflow-mcp-server

get_task_instance_try_details

Retrieve detailed information about a specific task instance retry within an Airflow DAG run using DAG ID, run ID, task ID, and retry number for analysis.

Instructions

get_task_instance_try_details

Input Schema

NameRequiredDescriptionDefault
dag_idNo
dag_run_idNo
task_idNo
task_try_numberNo

Input Schema (JSON Schema)

{ "properties": { "dag_id": { "anyOf": [ { "type": "string" }, { "type": "null" } ], "default": null, "title": "Dag Id" }, "dag_run_id": { "anyOf": [ { "type": "string" }, { "type": "null" } ], "default": null, "title": "Dag Run Id" }, "task_id": { "anyOf": [ { "type": "string" }, { "type": "null" } ], "default": null, "title": "Task Id" }, "task_try_number": { "anyOf": [ { "type": "integer" }, { "type": "null" } ], "default": null, "title": "Task Try Number" } }, "title": "get_task_instance_try_details_input", "type": "object" }

You must be authenticated.

Other Tools from airflow-mcp-server

Related Tools

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/abhishekbhakat/airflow-mcp-server'

If you have feedback or need assistance with the MCP directory API, please join our Discord server