Skip to main content
Glama

Grants Search MCP Server

# Grants MCP Development Roadmap ## Phase 3: Advanced Analytics & Scoring System ### Planned Additional Tools #### 1. Grant Match Scorer (`grant_match_scorer`) **Purpose**: Answer "Which grants are actually worth my time?" **Core Features**: - **Technical Fit Score** (0-100): Keyword matching, category alignment, institutional focus - **Competition Index** (NIH/NSF methodology): Application-to-award ratios with historical data - **ROI Score** (0-100): Award amount vs effort investment analysis - **Success Probability** (0-100): Based on eligibility matching and past success rates - **Timing Score** (0-100): Preparation time adequacy assessment **Mathematical Foundation**: ```python # Competition Index (based on NIH methodology) CI = (Total_Applications / Number_of_Awards) * 100 WCI = CI * (1 / sqrt(Award_Ceiling)) * Agency_Weight_Factor # Success Probability Score SPS = (Awards / Expected_Applications) * Eligibility_Score * Technical_Fit_Score # ROI Calculation ROI = ((Award_Amount - Application_Cost) / Application_Cost) * Success_Probability ``` #### 2. Hidden Opportunity Finder (`hidden_opportunity_finder`) **Purpose**: Answer "What opportunities am I missing?" **Discovery Methods**: - **Under-subscribed Grants**: Identify grants with low application volumes - **Emerging Funders**: Detect new funding agencies or programs - **Cross-Category Matching**: Find grants outside typical search categories - **Geographic Advantages**: Location-based funding preferences - **Timing Arbitrage**: Off-cycle or unusual deadline opportunities **Hidden Opportunity Score (HOS)**: ```python # Novel metric for undersubscribed grants Visibility_Index = (Search_Result_Position * Category_Popularity) / 100 Undersubscription = max(0, 100 - (Applications_Last_Year / Awards_Available) * 20) HOS = (Undersubscription * 0.4) + ((100 - Visibility_Index) * 0.3) + (Cross_Category_Score * 0.3) ``` #### 3. Strategic Application Planner (`strategic_application_planner`) **Purpose**: Answer "How do I maximize my win rate?" **Planning Features**: - **Portfolio Diversification**: Reach/match/safety grant categorization - **Timeline Optimization**: Deadline management and workload balancing - **Collaboration Suggestions**: Multi-PI or institutional partnerships - **Resource Allocation**: Budget and time distribution across applications - **Reuse Opportunities**: Leveraging existing materials and data **Strategic Metrics**: - **Portfolio Balance Score**: Ensures diversified risk profile - **Timeline Feasibility**: Realistic preparation time assessment - **Collaboration Synergy**: Partnership opportunity scoring - **Reuse Efficiency**: Material repurposing potential ### Implementation Architecture ``` src/mcp_server/analytics/ ├── scoring_engine.py # Main orchestrator for all scoring ├── metrics/ │ ├── competition_metrics.py # CI calculations │ ├── success_metrics.py # SPS calculations │ ├── roi_metrics.py # ROI calculations │ ├── timing_metrics.py # Timing calculations │ └── hidden_metrics.py # HOS calculations ├── database/ │ ├── session_manager.py # SQLite session persistence │ ├── score_storage.py # Score caching and storage │ └── analytics_cache.py # Enhanced caching for calculations ├── transparency/ │ ├── calculation_explainer.py # Transparent score breakdowns │ └── report_generator.py # Formatted analysis reports └── utils/ ├── numpy_calculator.py # Vectorized mathematical operations └── industry_constants.py # NIH/NSF benchmark constants ``` ### Tools Integration Plan #### Current Tools (Phase 1-2) ✅ 1. `opportunity_discovery` - Basic search and filtering 2. `agency_landscape` - Agency funding pattern analysis 3. `funding_trend_scanner` - Temporal trend analysis #### Phase 3 Tools (Planned) 🚧 4. `grant_match_scorer` - Multi-dimensional scoring system 5. `hidden_opportunity_finder` - Undersubscribed grant detection 6. `strategic_application_planner` - Portfolio optimization ### Database Schema (Phase 3) ```sql -- Grant scoring sessions CREATE TABLE scoring_sessions ( id INTEGER PRIMARY KEY, user_id TEXT, search_query TEXT, created_at TIMESTAMP, updated_at TIMESTAMP ); -- Individual grant scores CREATE TABLE grant_scores ( id INTEGER PRIMARY KEY, session_id INTEGER, opportunity_id TEXT, technical_fit_score REAL, competition_index REAL, roi_score REAL, success_probability REAL, timing_score REAL, overall_score REAL, calculation_details JSON, FOREIGN KEY (session_id) REFERENCES scoring_sessions(id) ); -- Strategic planning data CREATE TABLE application_plans ( id INTEGER PRIMARY KEY, session_id INTEGER, grant_ids TEXT, -- JSON array portfolio_balance REAL, timeline_feasibility REAL, total_funding_potential REAL, recommendation_tier TEXT, -- reach/match/safety FOREIGN KEY (session_id) REFERENCES scoring_sessions(id) ); ``` ### Transparency & Explainability All scoring calculations will provide detailed breakdowns: ```json { "grant_id": "EPA-R13-STAR-G1", "overall_score": 78.5, "scores": { "technical_fit": { "value": 85.0, "calculation": "keyword_match(0.9) * category_alignment(0.95) * institutional_focus(0.9)", "details": { "keyword_matches": ["renewable", "solar", "energy efficiency"], "category_alignment": "Environmental Technology - Perfect Match", "institutional_focus": "R1 Research University - High Priority" } }, "competition_index": { "value": 45.2, "calculation": "(226 applications / 5 awards) * 100", "interpretation": "Moderate competition", "industry_benchmark": "EPA average: 35-45" }, "roi_score": { "value": 892.0, "calculation": "(($500K - $15K) / $15K) * 0.72 probability", "components": { "award_amount": 500000, "application_cost": 15000, "success_probability": 0.72 } } }, "recommendation": "Strong Match - High Priority Application", "next_actions": [ "Begin preliminary research immediately", "Contact program officer for guidance", "Identify potential collaborators" ] } ``` ### Performance Targets (Phase 3) - **Grant Scoring**: <2 seconds for 10 grants, <10 seconds for 100 grants - **Hidden Opportunities**: Discover 5-10 overlooked grants per search - **Strategic Planning**: Generate portfolio recommendations in <5 seconds - **Database Operations**: <100ms for score retrieval, <500ms for complex analytics - **Cache Hit Rates**: >80% for repeated calculations ### Success Metrics **Quantitative Goals**: - Reduce grant search time by 70% - Increase application success rate by 2-3x through better targeting - Identify 15-25% more relevant opportunities via hidden opportunity detection - Improve portfolio ROI by 40% through strategic planning **Qualitative Goals**: - Transparent, explainable scoring that users trust - Intuitive strategic recommendations - Seamless integration with existing workflow - Actionable insights rather than just data ### Technology Stack Additions (Phase 3) **New Dependencies**: - `numpy` - Vectorized mathematical operations - `sqlite3` - Session persistence and analytics storage - `pandas` (optional) - Data manipulation for complex analytics - `scikit-learn` (optional) - Advanced matching algorithms **Enhanced Caching**: - Persistent SQLite cache for expensive calculations - NumPy array caching for vectorized operations - Session-based caching for multi-tool workflows ### Development Priorities 1. **Phase 3.1**: Implement `grant_match_scorer` with basic scoring algorithms 2. **Phase 3.2**: Add `hidden_opportunity_finder` with undersubscription detection 3. **Phase 3.3**: Build `strategic_application_planner` with portfolio optimization 4. **Phase 3.4**: Enhanced analytics, reporting, and visualization capabilities ### Testing Strategy (Phase 3) **Unit Tests**: - Individual scoring algorithm accuracy - Mathematical calculation correctness - Edge case handling **Integration Tests**: - Multi-tool workflow scenarios - Database persistence and retrieval - Cache performance under load **Validation Tests**: - Scoring accuracy against known successful/unsuccessful applications - Hidden opportunity detection validation - Strategic planning recommendation quality --- This roadmap provides the framework for implementing the remaining analytics tools that will transform the Grants MCP from a search tool into a comprehensive grant strategy platform.

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/Tar-ive/grants-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server