Browser-Use MCP Server
by Saik0s
Verified
import json
import logging
import pdb
import traceback
from typing import Optional, Type, List, Dict, Any, Callable
from PIL import Image, ImageDraw, ImageFont
import os
import base64
import io
import platform
from browser_use.agent.prompts import SystemPrompt, AgentMessagePrompt
from browser_use.agent.service import Agent
from browser_use.agent.views import (
ActionResult,
ActionModel,
AgentHistoryList,
AgentOutput,
AgentHistory,
)
from browser_use.browser.browser import Browser
from browser_use.browser.context import BrowserContext
from browser_use.browser.views import BrowserStateHistory
from browser_use.controller.service import Controller
from browser_use.telemetry.views import (
AgentEndTelemetryEvent,
AgentRunTelemetryEvent,
AgentStepTelemetryEvent,
)
from browser_use.utils import time_execution_async
from langchain_core.language_models.chat_models import BaseChatModel
from langchain_core.messages import (
BaseMessage,
)
from json_repair import repair_json
from mcp_server_browser_use.utils.agent_state import AgentState
from .custom_massage_manager import CustomMassageManager
from .custom_views import CustomAgentOutput, CustomAgentStepInfo
logger = logging.getLogger(__name__)
class CustomAgent(Agent):
def __init__(
self,
task: str,
llm: BaseChatModel,
add_infos: str = "",
browser: Browser | None = None,
browser_context: BrowserContext | None = None,
controller: Controller = Controller(),
use_vision: bool = True,
save_conversation_path: Optional[str] = None,
max_failures: int = 5,
retry_delay: int = 10,
system_prompt_class: Type[SystemPrompt] = SystemPrompt,
agent_prompt_class: Type[AgentMessagePrompt] = AgentMessagePrompt,
max_input_tokens: int = 128000,
validate_output: bool = False,
include_attributes: list[str] = [
"title",
"type",
"name",
"role",
"tabindex",
"aria-label",
"placeholder",
"value",
"alt",
"aria-expanded",
],
max_error_length: int = 400,
max_actions_per_step: int = 10,
tool_call_in_content: bool = True,
agent_state: AgentState = None,
initial_actions: Optional[List[Dict[str, Dict[str, Any]]]] = None,
# Cloud Callbacks
register_new_step_callback: (
Callable[["BrowserState", "AgentOutput", int], None] | None
) = None,
register_done_callback: Callable[["AgentHistoryList"], None] | None = None,
tool_calling_method: Optional[str] = "auto",
):
super().__init__(
task=task,
llm=llm,
browser=browser,
browser_context=browser_context,
controller=controller,
use_vision=use_vision,
save_conversation_path=save_conversation_path,
max_failures=max_failures,
retry_delay=retry_delay,
system_prompt_class=system_prompt_class,
max_input_tokens=max_input_tokens,
validate_output=validate_output,
include_attributes=include_attributes,
max_error_length=max_error_length,
max_actions_per_step=max_actions_per_step,
tool_call_in_content=tool_call_in_content,
initial_actions=initial_actions,
register_new_step_callback=register_new_step_callback,
register_done_callback=register_done_callback,
tool_calling_method=tool_calling_method,
)
if self.model_name in ["deepseek-reasoner"] or "deepseek-r1" in self.model_name:
# deepseek-reasoner does not support function calling
self.use_deepseek_r1 = True
# deepseek-reasoner only support 64000 context
self.max_input_tokens = 64000
else:
self.use_deepseek_r1 = False
# record last actions
self._last_actions = None
# record extract content
self.extracted_content = ""
# custom new info
self.add_infos = add_infos
# agent_state for Stop
self.agent_state = agent_state
self.agent_prompt_class = agent_prompt_class
self.message_manager = CustomMassageManager(
llm=self.llm,
task=self.task,
action_descriptions=self.controller.registry.get_prompt_description(),
system_prompt_class=self.system_prompt_class,
agent_prompt_class=agent_prompt_class,
max_input_tokens=self.max_input_tokens,
include_attributes=self.include_attributes,
max_error_length=self.max_error_length,
max_actions_per_step=self.max_actions_per_step,
)
def _setup_action_models(self) -> None:
"""Setup dynamic action models from controller's registry"""
# Get the dynamic action model from controller's registry
self.ActionModel = self.controller.registry.create_action_model()
# Create output model with the dynamic actions
self.AgentOutput = CustomAgentOutput.type_with_custom_actions(self.ActionModel)
def _log_response(self, response: CustomAgentOutput) -> None:
"""Log the model's response"""
if "Success" in response.current_state.prev_action_evaluation:
emoji = "✅"
elif "Failed" in response.current_state.prev_action_evaluation:
emoji = "❌"
else:
emoji = "🤷"
logger.info(f"{emoji} Eval: {response.current_state.prev_action_evaluation}")
logger.info(f"🧠 New Memory: {response.current_state.important_contents}")
logger.info(f"⏳ Task Progress: \n{response.current_state.task_progress}")
logger.info(f"📋 Future Plans: \n{response.current_state.future_plans}")
logger.info(f"🤔 Thought: {response.current_state.thought}")
logger.info(f"🎯 Summary: {response.current_state.summary}")
for i, action in enumerate(response.action):
logger.info(
f"🛠️ Action {i + 1}/{len(response.action)}: {action.model_dump_json(exclude_unset=True)}"
)
def update_step_info(
self, model_output: CustomAgentOutput, step_info: CustomAgentStepInfo = None
):
"""
update step info
"""
if step_info is None:
return
step_info.step_number += 1
important_contents = model_output.current_state.important_contents
if (
important_contents
and "None" not in important_contents
and important_contents not in step_info.memory
):
step_info.memory += important_contents + "\n"
task_progress = model_output.current_state.task_progress
if task_progress and "None" not in task_progress:
step_info.task_progress = task_progress
future_plans = model_output.current_state.future_plans
if future_plans and "None" not in future_plans:
step_info.future_plans = future_plans
@time_execution_async("--get_next_action")
async def get_next_action(self, input_messages: list[BaseMessage]) -> AgentOutput:
"""Get next action from LLM based on current state"""
messages_to_process = (
self.message_manager.merge_successive_human_messages(input_messages)
if self.use_deepseek_r1
else input_messages
)
ai_message = self.llm.invoke(messages_to_process)
self.message_manager._add_message_with_tokens(ai_message)
if self.use_deepseek_r1:
logger.info("🤯 Start Deep Thinking: ")
logger.info(ai_message.reasoning_content)
logger.info("🤯 End Deep Thinking")
if isinstance(ai_message.content, list):
ai_content = ai_message.content[0]
else:
ai_content = ai_message.content
ai_content = ai_content.replace("```json", "").replace("```", "")
ai_content = repair_json(ai_content)
parsed_json = json.loads(ai_content)
parsed: AgentOutput = self.AgentOutput(**parsed_json)
if parsed is None:
logger.debug(ai_message.content)
raise ValueError("Could not parse response.")
# Limit actions to maximum allowed per step
parsed.action = parsed.action[: self.max_actions_per_step]
self._log_response(parsed)
self.n_steps += 1
return parsed
@time_execution_async("--step")
async def step(self, step_info: Optional[CustomAgentStepInfo] = None) -> None:
"""Execute one step of the task"""
logger.info(f"\n📍 Step {self.n_steps}")
state = None
model_output = None
result: list[ActionResult] = []
try:
state = await self.browser_context.get_state(use_vision=self.use_vision)
self.message_manager.add_state_message(
state, self._last_actions, self._last_result, step_info
)
input_messages = self.message_manager.get_messages()
try:
model_output = await self.get_next_action(input_messages)
if self.register_new_step_callback:
self.register_new_step_callback(state, model_output, self.n_steps)
self.update_step_info(model_output, step_info)
logger.info(f"🧠 All Memory: \n{step_info.memory}")
self._save_conversation(input_messages, model_output)
if self.model_name != "deepseek-reasoner":
# remove prev message
self.message_manager._remove_state_message_by_index(-1)
except Exception as e:
# model call failed, remove last state message from history
self.message_manager._remove_state_message_by_index(-1)
raise e
actions: list[ActionModel] = model_output.action
result: list[ActionResult] = await self.controller.multi_act(
actions, self.browser_context
)
if len(result) != len(actions):
# I think something changes, such information should let LLM know
for ri in range(len(result), len(actions)):
result.append(
ActionResult(
extracted_content=None,
include_in_memory=True,
error=f"{actions[ri].model_dump_json(exclude_unset=True)} is Failed to execute. \
Something new appeared after action {actions[len(result) - 1].model_dump_json(exclude_unset=True)}",
is_done=False,
)
)
if len(actions) == 0:
# TODO: fix no action case
result = [
ActionResult(
is_done=True,
extracted_content=step_info.memory,
include_in_memory=True,
)
]
for ret_ in result:
if "Extracted page" in ret_.extracted_content:
# record every extracted page
self.extracted_content += ret_.extracted_content
self._last_result = result
self._last_actions = actions
if len(result) > 0 and result[-1].is_done:
if not self.extracted_content:
self.extracted_content = step_info.memory
result[-1].extracted_content = self.extracted_content
logger.info(f"📄 Result: {result[-1].extracted_content}")
self.consecutive_failures = 0
except Exception as e:
result = await self._handle_step_error(e)
self._last_result = result
finally:
actions = (
[a.model_dump(exclude_unset=True) for a in model_output.action]
if model_output
else []
)
self.telemetry.capture(
AgentStepTelemetryEvent(
agent_id=self.agent_id,
step=self.n_steps,
actions=actions,
consecutive_failures=self.consecutive_failures,
step_error=(
[r.error for r in result if r.error]
if result
else ["No result"]
),
)
)
if not result:
return
if state:
self._make_history_item(model_output, state, result)
async def run(self, max_steps: int = 100) -> AgentHistoryList:
"""Execute the task with maximum number of steps"""
try:
self._log_agent_run()
# Execute initial actions if provided
if self.initial_actions:
result = await self.controller.multi_act(
self.initial_actions,
self.browser_context,
check_for_new_elements=False,
)
self._last_result = result
step_info = CustomAgentStepInfo(
task=self.task,
add_infos=self.add_infos,
step_number=1,
max_steps=max_steps,
memory="",
task_progress="",
future_plans="",
)
for step in range(max_steps):
# 1) Check if stop requested
if self.agent_state and self.agent_state.is_stop_requested():
logger.info("🛑 Stop requested by user")
self._create_stop_history_item()
break
# 2) Store last valid state before step
if self.browser_context and self.agent_state:
state = await self.browser_context.get_state(
use_vision=self.use_vision
)
self.agent_state.set_last_valid_state(state)
if self._too_many_failures():
break
# 3) Do the step
await self.step(step_info)
if self.history.is_done():
if (
self.validate_output and step < max_steps - 1
): # if last step, we dont need to validate
if not await self._validate_output():
continue
logger.info("✅ Task completed successfully")
break
else:
logger.info("❌ Failed to complete task in maximum steps")
if not self.extracted_content:
self.history.history[-1].result[
-1
].extracted_content = step_info.memory
else:
self.history.history[-1].result[
-1
].extracted_content = self.extracted_content
return self.history
finally:
self.telemetry.capture(
AgentEndTelemetryEvent(
agent_id=self.agent_id,
success=self.history.is_done(),
steps=self.n_steps,
max_steps_reached=self.n_steps >= max_steps,
errors=self.history.errors(),
)
)
if not self.injected_browser_context:
await self.browser_context.close()
if not self.injected_browser and self.browser:
await self.browser.close()
if self.generate_gif:
output_path: str = "agent_history.gif"
if isinstance(self.generate_gif, str):
output_path = self.generate_gif
self.create_history_gif(output_path=output_path)
def _create_stop_history_item(self):
"""Create a history item for when the agent is stopped."""
try:
# Attempt to retrieve the last valid state from agent_state
state = None
if self.agent_state:
last_state = self.agent_state.get_last_valid_state()
if last_state:
# Convert to BrowserStateHistory
state = BrowserStateHistory(
url=getattr(last_state, "url", ""),
title=getattr(last_state, "title", ""),
tabs=getattr(last_state, "tabs", []),
interacted_element=[None],
screenshot=getattr(last_state, "screenshot", None),
)
else:
state = self._create_empty_state()
else:
state = self._create_empty_state()
# Create a final item in the agent history indicating done
stop_history = AgentHistory(
model_output=None,
state=state,
result=[ActionResult(extracted_content=None, error=None, is_done=True)],
)
self.history.history.append(stop_history)
except Exception as e:
logger.error(f"Error creating stop history item: {e}")
# Create empty state as fallback
state = self._create_empty_state()
stop_history = AgentHistory(
model_output=None,
state=state,
result=[ActionResult(extracted_content=None, error=None, is_done=True)],
)
self.history.history.append(stop_history)
def _convert_to_browser_state_history(self, browser_state):
return BrowserStateHistory(
url=getattr(browser_state, "url", ""),
title=getattr(browser_state, "title", ""),
tabs=getattr(browser_state, "tabs", []),
interacted_element=[None],
screenshot=getattr(browser_state, "screenshot", None),
)
def _create_empty_state(self):
return BrowserStateHistory(
url="", title="", tabs=[], interacted_element=[None], screenshot=None
)
def create_history_gif(
self,
output_path: str = "agent_history.gif",
duration: int = 3000,
show_goals: bool = True,
show_task: bool = True,
show_logo: bool = False,
font_size: int = 40,
title_font_size: int = 56,
goal_font_size: int = 44,
margin: int = 40,
line_spacing: float = 1.5,
) -> None:
"""Create a GIF from the agent's history with overlaid task and goal text."""
if not self.history.history:
logger.warning("No history to create GIF from")
return
images = []
# if history is empty or first screenshot is None, we can't create a gif
if not self.history.history or not self.history.history[0].state.screenshot:
logger.warning("No history or first screenshot to create GIF from")
return
# Try to load nicer fonts
try:
# Try different font options in order of preference
font_options = ["Helvetica", "Arial", "DejaVuSans", "Verdana"]
font_loaded = False
for font_name in font_options:
try:
if platform.system() == "Windows":
# Need to specify the abs font path on Windows
font_name = os.path.join(
os.getenv("WIN_FONT_DIR", "C:\\Windows\\Fonts"),
font_name + ".ttf",
)
regular_font = ImageFont.truetype(font_name, font_size)
title_font = ImageFont.truetype(font_name, title_font_size)
goal_font = ImageFont.truetype(font_name, goal_font_size)
font_loaded = True
break
except OSError:
continue
if not font_loaded:
raise OSError("No preferred fonts found")
except OSError:
regular_font = ImageFont.load_default()
title_font = ImageFont.load_default()
goal_font = regular_font
# Load logo if requested
logo = None
if show_logo:
try:
logo = Image.open("./static/browser-use.png")
# Resize logo to be small (e.g., 40px height)
logo_height = 150
aspect_ratio = logo.width / logo.height
logo_width = int(logo_height * aspect_ratio)
logo = logo.resize((logo_width, logo_height), Image.Resampling.LANCZOS)
except Exception as e:
logger.warning(f"Could not load logo: {e}")
# Create task frame if requested
if show_task and self.task:
task_frame = self._create_task_frame(
self.task,
self.history.history[0].state.screenshot,
title_font,
regular_font,
logo,
line_spacing,
)
images.append(task_frame)
# Process each history item
for i, item in enumerate(self.history.history, 1):
if not item.state.screenshot:
continue
# Convert base64 screenshot to PIL Image
img_data = base64.b64decode(item.state.screenshot)
image = Image.open(io.BytesIO(img_data))
if show_goals and item.model_output:
image = self._add_overlay_to_image(
image=image,
step_number=i,
goal_text=item.model_output.current_state.thought,
regular_font=regular_font,
title_font=title_font,
margin=margin,
logo=logo,
)
images.append(image)
if images:
# Save the GIF
images[0].save(
output_path,
save_all=True,
append_images=images[1:],
duration=duration,
loop=0,
optimize=False,
)
logger.info(f"Created GIF at {output_path}")
else:
logger.warning("No images found in history to create GIF")