Skip to main content
Glama
README.md13.2 kB
# MCP Task Manager A Model Context Protocol (MCP) server for comprehensive task management, deployed as a Cloudflare Worker. This open-source project enables AI assistants to plan, track, and manage complex multi-step requests efficiently with persistent storage using Cloudflare KV. ## 🚀 Features - **Request Planning**: Break down complex requests into manageable tasks - **Task Management**: Create, update, delete, and track task progress - **Approval Workflow**: Built-in approval system for task and request completion - **Progress Tracking**: Visual progress tables and detailed task information - **Persistent Storage**: Uses Cloudflare KV for reliable data persistence - **Serverless Architecture**: Deployed as a Cloudflare Worker for global availability - **RESTful API**: HTTP endpoints for easy integration with any application - **CORS Support**: Cross-origin requests enabled for web applications ## 📦 Deployment ### Prerequisites - [Cloudflare account](https://dash.cloudflare.com/sign-up) (free tier works) - [Wrangler CLI](https://developers.cloudflare.com/workers/wrangler/install-and-update/) installed - Node.js 18+ and npm/pnpm/yarn - Git for cloning the repository ### Quick Start 1. **Clone and setup the repository** ```bash git clone https://github.com/Rudra-ravi/mcp-taskmanager.git cd mcp-taskmanager npm install ``` 2. **Login to Cloudflare** ```bash npx wrangler login ``` This will open your browser to authenticate with Cloudflare. 3. **Create KV namespace** ```bash npx wrangler kv namespace create "TASKMANAGER_KV" ``` Copy the namespace ID from the output. 4. **Update configuration** Edit `wrangler.toml` and replace the KV namespace ID: ```toml [[kv_namespaces]] binding = "TASKMANAGER_KV" id = "your-new-kv-namespace-id-here" ``` 5. **Build and deploy** ```bash npm run build npx wrangler deploy ``` Your MCP Task Manager will be deployed and accessible at: `https://mcp-taskmanager.your-subdomain.workers.dev` ### Advanced Configuration #### Custom Worker Name To deploy with a custom name, update `wrangler.toml`: ```toml name = "my-custom-taskmanager" # Change this to your preferred name main = "worker.ts" compatibility_date = "2024-03-12" [build] command = "npm run build" [[kv_namespaces]] binding = "TASKMANAGER_KV" id = "your-kv-namespace-id-here" ``` #### Environment Variables For different environments (development, staging, production): ```toml [env.staging] name = "mcp-taskmanager-staging" [[env.staging.kv_namespaces]] binding = "TASKMANAGER_KV" id = "staging-kv-namespace-id" [env.production] name = "mcp-taskmanager-prod" [[env.production.kv_namespaces]] binding = "TASKMANAGER_KV" id = "production-kv-namespace-id" ``` Deploy to specific environments: ```bash npx wrangler deploy --env staging npx wrangler deploy --env production ``` ## 🔧 Usage ### API Endpoints The deployed worker provides two main endpoints: - `POST /list-tools` - Get available MCP tools - `POST /call-tool` - Execute MCP tool functions ### Testing Your Deployment After deployment, test your worker with curl: ```bash # Replace with your actual worker URL WORKER_URL="https://mcp-taskmanager.your-subdomain.workers.dev" # Test list tools curl -X POST $WORKER_URL/list-tools \ -H "Content-Type: application/json" \ -d '{"jsonrpc": "2.0", "id": 1, "method": "tools/list"}' # Test creating a request curl -X POST $WORKER_URL/call-tool \ -H "Content-Type: application/json" \ -d '{ "jsonrpc": "2.0", "id": 1, "method": "tools/call", "params": { "name": "request_planning", "arguments": { "originalRequest": "Test deployment", "tasks": [{"title": "Test task", "description": "Verify deployment works"}] } } }' ``` ### Available Tools #### 📋 Core Task Management - **`request_planning`** - Register a new user request and plan its associated tasks - **`get_next_task`** - Get the next pending task for a request - **`mark_task_done`** - Mark a task as completed with optional details - **`approve_task_completion`** - Approve a completed task - **`approve_request_completion`** - Approve the completion of an entire request #### ⚙️ Task Operations - **`add_tasks_to_request`** - Add new tasks to an existing request - **`update_task`** - Update task title or description (only for pending tasks) - **`delete_task`** - Remove a task from a request - **`open_task_details`** - Get detailed information about a specific task #### 📊 Information & Monitoring - **`list_requests`** - List all requests with their current status and progress ### Example API Calls #### List Available Tools ```bash curl -X POST https://your-worker.your-subdomain.workers.dev/list-tools \ -H "Content-Type: application/json" \ -d '{ "jsonrpc": "2.0", "id": 1, "method": "tools/list" }' ``` #### Plan a New Request ```bash curl -X POST https://your-worker.your-subdomain.workers.dev/call-tool \ -H "Content-Type: application/json" \ -d '{ "jsonrpc": "2.0", "id": 1, "method": "tools/call", "params": { "name": "request_planning", "arguments": { "originalRequest": "Build a web application for task management", "splitDetails": "Breaking down into frontend, backend, and deployment tasks", "tasks": [ { "title": "Setup React frontend", "description": "Initialize React app with TypeScript and essential dependencies" }, { "title": "Create backend API", "description": "Build REST API with Node.js and Express" }, { "title": "Deploy application", "description": "Deploy to cloud platform with CI/CD pipeline" } ] } } }' ``` ## 📊 Data Model ### Task Structure ```typescript interface Task { id: string; // Unique task identifier (e.g., "task-1") title: string; // Task title description: string; // Detailed task description done: boolean; // Whether task is marked as done approved: boolean; // Whether task completion is approved completedDetails: string; // Details provided when marking task as done } ``` ### Request Structure ```typescript interface RequestEntry { requestId: string; // Unique request identifier (e.g., "req-1") originalRequest: string; // Original user request description splitDetails: string; // Details about how request was split into tasks tasks: Task[]; // Array of tasks for this request completed: boolean; // Whether entire request is completed } ``` ### Task Status Flow ``` ❌ Pending → ⏳ Done (awaiting approval) → ✅ Approved ``` Tasks can only be updated when in "Pending" status. Once marked as done or approved, they become read-only. ## 🛠️ Development ### Local Development ```bash # Install dependencies npm install # Build the project npm run build # Start local development server (with remote KV) npx wrangler dev # Start local development server (with local KV for testing) npx wrangler dev --local # Deploy to preview environment npx wrangler deploy --env preview ``` ### Testing ```bash # Test the build npm run build # Test deployment (dry run - shows what would be deployed) npx wrangler deploy --dry-run # Run local tests npm test # If you add tests # Test with local KV storage npx wrangler dev --local ``` ### Debugging View real-time logs: ```bash # Tail logs from deployed worker npx wrangler tail # Tail logs with filtering npx wrangler tail --format pretty ``` ### KV Data Management ```bash # List all keys in your KV namespace npx wrangler kv:key list --binding TASKMANAGER_KV # Get a specific key value npx wrangler kv:key get "tasks" --binding TASKMANAGER_KV # Delete all data (be careful!) npx wrangler kv:key delete "tasks" --binding TASKMANAGER_KV ``` ## 🏗️ Architecture The MCP Task Manager is built as a Cloudflare Worker with the following components: ``` ┌─────────────────┐ ┌──────────────────┐ ┌─────────────────┐ │ AI Assistant │───▶│ Cloudflare │───▶│ Cloudflare KV │ │ (Claude, etc) │ │ Worker │ │ Storage │ └─────────────────┘ └──────────────────┘ └─────────────────┘ │ ▼ ┌──────────────────┐ │ TaskManagerServer│ │ (Business Logic) │ └──────────────────┘ ``` ### Components - **TaskManagerServer Class**: Core business logic for task management - **Worker Interface**: HTTP endpoints for MCP protocol communication - **Cloudflare KV Storage**: Persistent data storage for tasks and requests - **MCP Protocol**: Standard Model Context Protocol for AI assistant integration - **CORS Support**: Enables web application integration ### Benefits - **Global Edge Deployment**: Low latency worldwide via Cloudflare's network - **Serverless**: No server management, automatic scaling - **Persistent Storage**: Data survives across deployments - **Cost Effective**: Cloudflare's generous free tier - **High Availability**: Built-in redundancy and failover ## 📈 Monitoring and Logs ### Cloudflare Dashboard View logs and metrics in the Cloudflare Dashboard: 1. Go to [Cloudflare Dashboard](https://dash.cloudflare.com) 2. Navigate to Workers & Pages 3. Select your `mcp-taskmanager` worker 4. View logs, metrics, and analytics ### Real-time Monitoring ```bash # View live logs npx wrangler tail # View formatted logs npx wrangler tail --format pretty # Filter logs by status npx wrangler tail --status error ``` ### Key Metrics to Monitor - **Request Volume**: Number of API calls - **Response Times**: Latency of operations - **Error Rates**: Failed requests and their causes - **KV Operations**: Storage read/write performance - **Memory Usage**: Worker memory consumption ### Troubleshooting Common Issues | Issue | Cause | Solution | |-------|-------|----------| | 500 Internal Server Error | KV namespace not found | Check KV namespace ID in wrangler.toml | | CORS errors | Missing headers | Verify CORS headers in worker.ts | | Task not found | Invalid task/request ID | Check ID format and existence | | Build failures | TypeScript errors | Run `npm run build` locally first | ## 🤝 Contributing We welcome contributions! Here's how to get started: ### Development Setup 1. Fork the repository 2. Clone your fork: `git clone https://github.com/your-username/mcp-taskmanager.git` 3. Create a feature branch: `git checkout -b feature/amazing-feature` 4. Install dependencies: `npm install` 5. Make your changes 6. Test locally: `npx wrangler dev --local` 7. Build and test: `npm run build` ### Contribution Guidelines - Follow TypeScript best practices - Add tests for new features - Update documentation for API changes - Use conventional commit messages - Ensure all tests pass before submitting ### Pull Request Process 1. Commit your changes: `git commit -m 'Add amazing feature'` 2. Push to your branch: `git push origin feature/amazing-feature` 3. Open a Pull Request with: - Clear description of changes - Screenshots/examples if applicable - Reference to any related issues ### Areas for Contribution - 🐛 Bug fixes and improvements - 📚 Documentation enhancements - ✨ New MCP tools and features - 🧪 Test coverage improvements ## License This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details. ## 💬 Support ### Getting Help - **GitHub Issues**: [Report bugs or request features](https://github.com/Rudra-ravi/mcp-taskmanager/issues) - **Discussions**: [Ask questions and share ideas](https://github.com/Rudra-ravi/mcp-taskmanager/discussions) - **Documentation**: Check this README and inline code comments ### Community Resources - **MCP Documentation**: [Model Context Protocol](https://modelcontextprotocol.io/) - **Cloudflare Workers Docs**: [Learn more about Workers](https://developers.cloudflare.com/workers/) ### Reporting Issues When reporting bugs, please include: - Your Cloudflare Worker URL - Steps to reproduce the issue - Expected vs actual behavior - Error messages or logs - Browser/client information ## 🙏 Acknowledgments - Built with the [Model Context Protocol SDK](https://github.com/modelcontextprotocol/sdk) - Powered by [Cloudflare Workers](https://workers.cloudflare.com/) - Designed for seamless AI assistant integration - Inspired by the need for better task management in AI workflows ## 📄 License This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details. --- **Made with ❤️ for the AI community** Deploy your own instance and start managing tasks efficiently with AI assistants!

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/Rudra-ravi/mcp-taskmanager'

If you have feedback or need assistance with the MCP directory API, please join our Discord server