quickstart.pyā¢4.15 kB
#!/usr/bin/env python3
"""
Quick Start Demo for Rishi's Resume Server
Run this to see example interactions with the resume
"""
import json
import time
from pathlib import Path
# Load resume data
with open("resume_data.json", "r") as f:
resume_data = json.load(f)
def print_section(title):
"""Print a formatted section header"""
print(f"\n{'='*60}")
print(f" {title}")
print(f"{'='*60}\n")
def simulate_query(question, response_generator):
"""Simulate a query with timing"""
print(f"ā Question: {question}")
start = time.time()
response = response_generator()
elapsed = (time.time() - start) * 1000
print(f"š¬ Response: {response}")
print(f"ā±ļø Response time: {elapsed:.0f}ms\n")
return response
def demo_ai_experience():
"""Demo AI/ML experience queries"""
print_section("š¤ AI/ML EXPERIENCE")
# Query 1: AI Models
simulate_query(
"What AI models has Rishi built?",
lambda: f"Rishi built an ML-powered underwriting model at Justworks achieving {resume_data['ai_experience']['models_built'][0]}. "
f"He's also championed AI adoption using tools like {', '.join(resume_data['ai_experience']['tools_used'])}."
)
# Query 2: AI Leadership
simulate_query(
"How has Rishi championed AI adoption?",
lambda: "Rishi has led AI adoption through: " + ", ".join(resume_data['ai_experience']['initiatives_led'][:2])
)
def demo_business_impact():
"""Demo business impact queries"""
print_section("š° BUSINESS IMPACT")
# Revenue Impact
simulate_query(
"What revenue has Rishi generated?",
lambda: f"Key revenue impacts: {', '.join(resume_data['key_metrics']['revenue_impact'])}"
)
# Efficiency Gains
simulate_query(
"What efficiency improvements has Rishi delivered?",
lambda: f"Major efficiency gains: {', '.join(resume_data['key_metrics']['efficiency_gains'][:3])}"
)
def demo_experience_search():
"""Demo experience searching"""
print_section("š¢ EXPERIENCE SEARCH")
# Company search
company = "Justworks"
exp = next((e for e in resume_data['experience'] if company in e['company']), None)
if exp:
simulate_query(
f"Tell me about Rishi's role at {company}",
lambda: f"{exp['title']} at {exp['company']} ({exp['duration']}). "
f"Key achievement: {exp['achievements'][0]['description'] if exp['achievements'] else 'Multiple achievements'}"
)
def demo_fit_for_role():
"""Demo fit for AI PM role"""
print_section("šÆ FIT FOR AI PM ROLE")
simulate_query(
"Why is Rishi a great fit for an AI PM role?",
lambda: "Top reasons: " + " | ".join(resume_data['unique_value_props']['for_ai_pm_role'][:3])
)
def show_analytics():
"""Show analytics summary"""
print_section("š ANALYTICS SUMMARY")
print("Query Categories Demonstrated:")
print(" ⢠AI/ML Experience: 2 queries")
print(" ⢠Business Impact: 2 queries")
print(" ⢠Company Experience: 1 query")
print(" ⢠Role Fit: 1 query")
print(f"\nTotal Queries: 6")
print(f"Average Response Time: <100ms")
print(f"Coverage: All major resume sections")
def main():
"""Run the complete demo"""
print("\n" + "="*60)
print(" š RISHI'S RESUME MCP SERVER - QUICK START DEMO")
print("="*60)
print("\nThis demo shows example interactions with Rishi's resume.")
print("The actual MCP server provides many more query capabilities!\n")
input("Press Enter to start the demo...")
# Run demos
demo_ai_experience()
demo_business_impact()
demo_experience_search()
demo_fit_for_role()
show_analytics()
print_section("ā
DEMO COMPLETE")
print("To run the full MCP server:")
print(" 1. Install dependencies: pip install -r requirements.txt")
print(" 2. Run server: python server.py")
print("\nOr use Docker: docker run -p 8000:8000 rishi-resume-mcp")
print("\nšÆ Ready to explore Rishi's qualifications for your AI PM role!")
if __name__ == "__main__":
main()