Get Notes MCP Server / Get 笔记 MCP 服务器
🇬🇧 English
A Model Context Protocol (MCP) server for integrating with Get Notes API. This server provides tools to search and recall knowledge from your Get Notes knowledge base.
Features
Knowledge Search: AI-processed search that returns synthesized answers and references.
Knowledge Recall: Raw recall of relevant notes and files.
Rate Limiting: Built-in protection with QPS < 2 and Total Requests < 5000 limits.
Retry Mechanism: Automatic retries for transient network errors (5xx).
Installation
Clone the repository
Install dependencies:
npm installCreate
.envfile from example:cp .env.example .envConfigure your API key in
.env:GET_API_KEY=T0TR1HWqw+tL00gVc5PPoXDnGIUIuPw7QCBeb1dMC6afCojR9WpHyuZicEFJjkMg3oZYS0HB/S3vqOj7+0e5FGoVtYuv938zkR8= GET_NOTE_TOPIC_ID=RYk1kmRJ
Usage
Running with npx
You can run the server directly without installing it using npx:
MCP Configuration (Claude Desktop)
Option 1: Single Knowledge Base (Simple Setup)
For a single knowledge base, add this to your claude_desktop_config.json:
Option 2: Multiple Knowledge Bases (Grouped Configuration - Recommended)
For multiple knowledge bases sharing the same API key, use grouped configuration. The system will automatically expand them into individual knowledge bases:
This configuration will be automatically expanded into two independent knowledge bases: kb_pancreatic_trials and kb_patient_experience.
Option 3: Using Local Configuration File (Recommended for Development)
Create a knowledge_bases.json file in your project root:
Then configure Claude Desktop to use the local file:
How Claude Uses Multiple Knowledge Bases
Claude automatically selects the appropriate knowledge base - no manual selection needed!
Workflow:
User asks a question: "How long after pancreatic cancer surgery should chemotherapy start?"
Claude automatically calls : Views all available knowledge bases
Claude intelligently selects: Based on the question content, automatically chooses the most relevant KB (e.g.,
kb_pancreatic_trials)Claude calls : Passes the selected
kb_idand the questionReturns results: Claude synthesizes the search results into an answer
Users can also specify explicitly:
"Search in the Tumor Clinical Trials KB: pancreatic cancer chemotherapy timing"
"Find in Patient Experience: chemotherapy side effect management"
This way Claude knows exactly which knowledge base to use.
Running Locally
Testing with MCP Inspector
You can test the MCP server interactively using the MCP Inspector:
Tools
list_knowledge_bases
List all available knowledge bases with their IDs, names, and descriptions.
Parameters: None
Returns: Array of knowledge base information (without sensitive API keys)
search_knowledge
Search the knowledge base with AI processing.
Parameters:
kb_id(string, optional): Knowledge base ID. If not provided, uses the first configured KB.question(string, required): The question to ask.deep_seek(boolean): Enable deep thinking mode (default: false).history(array): Chat history for context.
recall_knowledge
Raw recall from knowledge base without AI synthesis.
Parameters:
kb_id(string, optional): Knowledge base ID. If not provided, uses the first configured KB.question(string, required): The question or query.top_k(number): Number of results to return (default: 10).intent_rewrite(boolean): Enable intent rewrite (default: false).
Development
Running Tests
Project Structure
src/api: API client implementationsrc/utils: Utility classes (RateLimiter, etc.)tests: Unit and integration testsindex.js: Main MCP server entry point
License
ISC
❤️ Acknowledgments
This project is contributed by the Xiao-X-Bao Community - an AI open-source public welfare community focused on improving medical information access for cancer/rare disease patients and their families throughout their life cycle.
About Xiao-X-Bao Community
We are an AI open-source public welfare community dedicated to using AI technology to build a high-quality, high-density patient knowledge ecosystem to improve medical information barriers. Our community brings together a diverse group of open-source contributors, AI technology experts, cancer patients, family members, medical professionals, and public welfare volunteers, working together to improve the information access challenges faced by patients.
Community Website: https://info.xiao-x-bao.com.cn
Our Mission: To use AI technology to break down medical information barriers and build a comprehensive knowledge ecosystem for patients.
Origin of Community Name: All our AI assistants are named "Xiao-X-Bao" (Little X Treasure), such as "Xiao Yi Bao" (Little Pancreas Treasure), "Xiao Fen Bao" (Little Pink Treasure), etc., hence our community is named "Xiao-X-Bao Community".
Community Development: In 2024, the project was donated to the "Tiangong Kaiwu Foundation", which provides funding and guidance to promote public welfare initiatives.
Progress Updates: Published via the WeChat Official Account "Xiao Yi Bao Assistant".
Community Contact
Detailed Community Introduction: View Introduction
Contact Us:
WeChat: qinxiaoqiang2002
WeChat: hhxdeweixinxin
WeChat: zhuangbiaowei
We welcome all contributors, developers, medical professionals, and volunteers to join our community and use technology to improve medical information accessibility! 🌟
🇨🇳 中文
这是一个用于集成 Get 笔记 API 的 Model Context Protocol (MCP) 服务器。该服务器提供了从您的 Get 笔记知识库中搜索和召回知识的工具。
功能特性
知识库搜索 (Knowledge Search):经过 AI 处理的搜索,返回综合的答案和引用。
知识库召回 (Knowledge Recall):相关笔记和文件的原始召回。
速率限制 (Rate Limiting):内置保护,限制 QPS < 2 和总请求数 < 5000。
重试机制 (Retry Mechanism):针对瞬时网络错误 (5xx) 的自动重试。
安装
克隆仓库
安装依赖:
npm install从示例创建
.env文件:cp .env.example .env在
.env中配置您的 API 密钥:GET_API_KEY=T0TR1HWqw+tL00gVc5PPoXDnGIUIuPw7QCBeb1dMC6afCojR9WpHyuZicEFJjkMg3oZYS0HB/S3vqOj7+0e5FGoVtYuv938zkR8= GET_NOTE_TOPIC_ID=RYk1kmRJ
使用方法
使用 npx 运行
您可以直接使用 npx 运行服务器,无需安装:
MCP 配置 (Claude Desktop)
将以下配置添加到您的 claude_desktop_config.json:
方式1:单个知识库(简单配置)
方式2:多知识库(分组配置,推荐)
如果多个知识库共享同一个 API Key,可以使用分组配置。系统会自动将其展开为独立的知识库:
上述配置会自动展开为两个独立的知识库:kb_pancreatic_trials 和 kb_patient_experience。
方式3:使用本地配置文件(推荐用于开发)
在项目根目录创建 knowledge_bases.json 文件:
然后在 Claude Desktop 配置中使用本地文件:
Claude 如何使用多知识库
Claude 会自动选择合适的知识库,无需手动选择!
工作流程:
用户提问:"胰腺癌术后多久开始化疗?"
Claude 自动调用 :查看所有可用的知识库
Claude 智能选择:根据问题内容,自动选择最相关的知识库(如
kb_pancreatic_trials)Claude 调用 :传入选定的
kb_id和问题返回结果:Claude 综合搜索结果给出答案
用户也可以明确指定:
"在肿瘤临床试验知识库中搜索:胰腺癌化疗方案"
"在小胰宝病友经验中查找:化疗副作用处理方法"
这样 Claude 就会明确使用指定的知识库。
本地运行
使用 MCP Inspector 测试
您可以使用 MCP Inspector 交互式测试 MCP 服务器:
工具说明
list_knowledge_bases
列出所有可用的知识库及其 ID、名称和描述。
参数: 无
返回: 知识库信息数组(不包含敏感的 API 密钥)
search_knowledge
使用 AI 处理搜索知识库。
参数:
kb_id(string, 可选): 知识库 ID。如果未提供,使用第一个配置的知识库。question(string, 必需): 要提问的问题。deep_seek(boolean): 启用深度思考模式(默认值:false)。history(array): 用于上下文的聊天历史。
recall_knowledge
从知识库原始召回,不进行 AI 综合。
参数:
kb_id(string, 可选): 知识库 ID。如果未提供,使用第一个配置的知识库。question(string, 必需): 问题或查询。top_k(number): 返回结果数量(默认值:10)。intent_rewrite(boolean): 启用意图重写(默认值:false)。
开发
运行测试
项目结构
src/api:API 客户端实现src/utils:工具类(速率限制器等)tests:单元和集成测试index.js:MCP 服务器主入口点
许可证
ISC
❤️ 致谢
本项目由小x宝社区贡献 - 一个专注于改善癌症/罕见病患者及其家庭整个生命周期医疗信息获取的AI开源公益社区。
关于小x宝社区
我们是一个AI开源公益社区,致力于使用AI技术构建高质量、高密度的患者知识生态系统,以改善医疗信息壁垒。我们的社区汇聚了开源贡献者、AI技术专家、癌症患者、家庭成员、医疗专业人员和公益志愿者等多元化群体,共同努力改善患者面临的信息获取挑战。
社区网站:https://info.xiao-x-bao.com.cn
我们的使命:使用AI技术打破医疗信息壁垒,为患者构建全面的知识生态系统。
社区名称由来:我们所有的AI助手都以"小x宝"命名,如"小胰宝"、"小粉宝"等,因此我们的社区命名为"小x宝社区"。
社区发展:2024年,项目捐赠给"天工开物基金会",该基金会提供资金和指导以促进公益倡议。
进展更新:通过微信公众号"小胰宝助手"发布。
社区联系方式
详细社区介绍: 查看介绍
社区联系方式:
微信号: qinxiaoqiang2002
微信号: hhxdeweixinxin
微信号: zhuangbiaowei
我们欢迎所有贡献者、开发人员、医疗专业人员和志愿者加入我们的社区,使用技术改善医疗信息可及性!🌟
This server cannot be installed