Skip to main content
Glama
README.md2.94 kB
# Claude Skills MCP Backend Heavy backend server for Claude Skills MCP system with vector search capabilities. ## Overview This is the backend component of the Claude Skills MCP system. It provides: - Vector-based semantic search using sentence-transformers - Skill indexing and retrieval - MCP protocol via Streamable HTTP transport - Background skill loading from GitHub and local sources **Note**: This package is typically auto-installed by the frontend (`claude-skills-mcp`). You only need to install it manually for: - Remote deployment (hosting your own backend) - Development and testing - Standalone usage without the frontend proxy ## Installation ```bash # Via uv (recommended) uv tool install claude-skills-mcp-backend # Via uvx (one-time use) uvx claude-skills-mcp-backend # Via pip pip install claude-skills-mcp-backend ``` ## Usage ### Run Standalone Server ```bash # Default (localhost:8765) claude-skills-mcp-backend # Custom port claude-skills-mcp-backend --port 8080 # For remote access claude-skills-mcp-backend --host 0.0.0.0 --port 8080 # With custom configuration claude-skills-mcp-backend --config my-config.json # Verbose logging claude-skills-mcp-backend --verbose ``` ### Configuration ```bash # Print example configuration claude-skills-mcp-backend --example-config > config.json # Edit config.json to customize skill sources, embedding model, etc. # Run with custom config claude-skills-mcp-backend --config config.json ``` ## Endpoints When running, the backend exposes: - **Streamable HTTP MCP**: `http://localhost:8765/mcp` - **Health Check**: `http://localhost:8765/health` ## Docker Deployment ### Build Image ```bash docker build -t claude-skills-mcp-backend . ``` ### Run Container ```bash # For local access docker run -p 8765:8765 claude-skills-mcp-backend # For remote access docker run -p 8080:8765 \ -e HOST=0.0.0.0 \ claude-skills-mcp-backend --host 0.0.0.0 --port 8765 ``` ## Dependencies This package includes heavy dependencies (~250 MB): - PyTorch (CPU-only on Linux): ~150-200 MB - sentence-transformers: ~50 MB - numpy, httpx, fastapi, uvicorn: ~30 MB **First download may take 60-180 seconds** depending on your internet connection. ## Performance - **Startup time**: 2-5 seconds (with cached dependencies) - **First search**: +2-5 seconds (embedding model download, one-time) - **Query time**: <1 second after models loaded - **Memory usage**: ~500 MB ## Development ```bash # Clone the monorepo git clone https://github.com/K-Dense-AI/claude-skills-mcp.git cd claude-skills-mcp/packages/backend # Install in development mode uv pip install -e ".[test]" # Run tests uv run pytest tests/ ``` ## Related Packages - **claude-skills-mcp** (Frontend): Lightweight proxy that auto-installs this backend - **Main Repository**: https://github.com/K-Dense-AI/claude-skills-mcp ## License Apache License 2.0 Copyright 2025 K-Dense AI (https://k-dense.ai)

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/OrionLi545/claude-skills-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server