Skip to main content
Glama
NimbleBrainInc

MCP Echo Service

Echo MCP Server

mpak NimbleBrain Discord License: MIT

A Model Context Protocol (MCP) server that echoes messages, delays, and structured JSON data. Useful for testing MCP client integrations, verifying protocol connectivity, and validating tool call behavior.

View on mpak registry | Built by

Install

Install with mpak:

mpak install @nimblebraininc/echo

Claude Code

claude mcp add echo -- mpak run @nimblebraininc/echo

Claude Desktop

Add to your claude_desktop_config.json:

{ "mcpServers": { "echo": { "command": "mpak", "args": ["run", "@nimblebraininc/echo"] } } }

See the mpak registry page for full install options.

Related MCP server: Echo MCP Server

Tools

echo_message

Echo back a message with optional uppercase formatting.

Parameter

Type

Required

Description

message

string

Yes

The message to echo back

uppercase

boolean

No

Convert the message to uppercase (default: false)

Example call:

{ "name": "echo_message", "arguments": { "message": "Hello Echo!", "uppercase": true } }

Example response:

{ "original_message": "Hello Echo!", "echoed_message": "HELLO ECHO!", "uppercase_applied": true, "message_length": 11, "timestamp": "2025-01-15T12:00:00+00:00" }

echo_with_delay

Echo back a message after a simulated delay. Useful for testing timeout handling and async behavior.

Parameter

Type

Required

Description

message

string

Yes

The message to echo back

delay_seconds

number

No

Delay in seconds, max 5.0 (default: 1.0)

Example call:

{ "name": "echo_with_delay", "arguments": { "message": "Delayed echo", "delay_seconds": 2.0 } }

Example response:

{ "original_message": "Delayed echo", "echoed_message": "Delayed echo", "requested_delay": 2.0, "actual_delay": 2.001, "start_time": "2025-01-15T12:00:00+00:00", "end_time": "2025-01-15T12:00:02+00:00", "timestamp": "2025-01-15T12:00:02+00:00" }

echo_json

Echo back structured JSON data with validation and analysis.

Parameter

Type

Required

Description

data

object

Yes

JSON object to echo back

Example call:

{ "name": "echo_json", "arguments": { "data": { "name": "test", "count": 42, "active": true } } }

Example response:

{ "original_data": {"name": "test", "count": 42, "active": true}, "echoed_data": {"name": "test", "count": 42, "active": true}, "analysis": { "key_count": 3, "keys": ["name", "count", "active"], "data_types": {"name": "str", "count": "int", "active": "bool"}, "total_size": 42 }, "timestamp": "2025-01-15T12:00:00+00:00" }

Quick Start

Local Development

git clone https://github.com/NimbleBrainInc/mcp-echo.git cd mcp-echo # Install dependencies uv sync # Run the server (stdio mode) uv run python -m mcp_echo.server # Or run via FastMCP uv run fastmcp run src/mcp_echo/server.py

The server supports HTTP transport with:

  • Health check: GET /health

  • MCP endpoint: POST /mcp

Development

# Install with dev dependencies uv sync --group dev # Run unit tests make test # Run with coverage make test-cov # Run all checks (format, lint, typecheck, unit tests) make check # Format uv run ruff format . # Lint uv run ruff check .

E2E Tests

End-to-end tests validate the full MCPB bundle lifecycle: building the bundle, deploying it into a Docker container, and calling tools over HTTP.

Prerequisites: Docker running, mcpb CLI installed (npm install -g @anthropic-ai/mcpb)

make test-e2e

The tests:

  1. Vendor dependencies for the Docker container's Linux architecture

  2. Build a .mcpb bundle with mcpb pack

  3. Serve the bundle over HTTP

  4. Start a nimbletools/mcpb-python container that downloads and runs the bundle

  5. Verify the /health endpoint, MCP tool listing, and tool invocation via streamable HTTP

About

Echo MCP Server is published on the mpak registry and built by NimbleBrain. mpak is an open registry for Model Context Protocol servers.

License

MIT

-
security - not tested
A
license - permissive license
-
quality - not tested

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/NimbleBrainInc/mcp-echo'

If you have feedback or need assistance with the MCP directory API, please join our Discord server