# π MCP Server - Personal Expense Manager
An MCP (Model Context Protocol) server for managing and analyzing personal expenses from CSV files.
## π Features
- **Add expenses** to a CSV file with categorization
- **Get recent expenses** with day-based filtering
- **MCP Resource** for direct access to all expenses
- **Specialized prompt** that generates automatic analytical summaries
- **Analysis by category and payment method**
- **Trend detection and spending patterns**
## π Requirements
```bash
pip install fastmcp mcp
```
## ποΈ Project Structure
```
expenses-mcp-server/
βββ server.py # Main MCP server
βββ data/
β βββ expenses.csv # Expenses file (created automatically)
βββ requirements.txt
βββ README.md
```
## π οΈ Installation & Usage
### 1. Clone or create the project
```bash
mkdir expenses-mcp-server
cd expenses-mcp-server
```
### 2. Create virtual environment (recommended)
```bash
python -m venv venv
source venv/bin/activate # Linux/Mac
# or
venv\Scripts\activate # Windows
```
### 3. Install dependencies
```bash
pip install fastmcp mcp
```
### 4. Run the server
```bash
python server.py
```
## π§ Available Functionalities
### Tools
#### 1. `agregar_gasto` (Add Expense)
Adds a new expense to the system.
**Parameters:**
- `fecha`: Date in 'YYYY-MM-DD' format
- `categoria`: Expense category (e.g., "Food", "Transport")
- `cantidad`: Expense amount (float)
- `metodo_pago`: Payment method used
**Example:**
```python
agregar_gasto("2024-01-15", "Groceries", 150.75, "Debit Card")
```
#### 2. `obtener_gastos_recientes` (Get Recent Expenses)
Gets expenses from the last N days.
**Parameters:**
- `dias`: Number of days to query (default: 5)
**Example:**
```python
obtener_gastos_recientes(7) # Last 7 days
```
### Resource
#### `resource://gastos`
Direct access to all stored expenses.
### Specialized Prompt
#### `Resumen de Gastos Recientes` (Recent Expenses Summary)
Generates a prompt with structured data for AI to create a complete analysis including:
- π Statistical calculations (totals, averages)
- π·οΈ Category analysis
- π³ Payment method distribution
- π Trend identification
- π‘ Personalized recommendations
## π CSV Structure
The `data/expenses.csv` file has the following structure:
```csv
fecha,categoria,cantidad,metodo_pago
2024-01-15,Groceries,150.75,Debit Card
2024-01-16,Transport,45.50,Cash
2024-01-17,Entertainment,89.99,Credit Card
```
## π MCP Client Integration
### Python Client Example
```python
import asyncio
from mcp import ClientSession, StdioServerParameters
from mcp.client.stdio import stdio_client
async def main():
server_params = StdioServerParameters(
command="python",
args=["server.py"]
)
async with stdio_client(server_params) as (read, write):
async with ClientSession(read, write) as session:
# Initialize session
await session.initialize()
# Add expense
result = await session.call_tool(
"agregar_gasto",
{
"fecha": "2024-01-18",
"categoria": "Restaurant",
"cantidad": 85.50,
"metodo_pago": "Credit Card"
}
)
print(result)
# Get recent expenses
expenses = await session.call_tool(
"obtener_gastos_recientes",
{"dias": 5}
)
print(expenses)
if __name__ == "__main__":
asyncio.run(main())
```
## π― Use Cases
### 1. **Daily Expense Tracking**
```bash
# Add transport expense
agregar_gasto("2024-01-18", "Transport", 35.00, "Cash")
# Add food expense
agregar_gasto("2024-01-18", "Food", 120.00, "Debit Card")
```
### 2. **Weekly Analysis**
```bash
# Get last week summary
obtener_gastos_recientes(7)
```
### 3. **Monthly Report**
```bash
# Complete 30-day analysis
obtener_gastos_recientes(30)
```
## π Example Generated Analysis
The specialized prompt generates analysis like:
```
π EXPENSE SUMMARY - LAST 5 DAYS
π° TOTAL SPENT: $1,245.75
π
DAILY AVERAGE: $249.15
π’ TRANSACTIONS: 8 purchases
π·οΈ CATEGORY DISTRIBUTION:
β’ Groceries: 45% ($560.25)
β’ Transport: 25% ($311.44)
β’ Entertainment: 20% ($249.15)
β’ Restaurant: 10% ($124.58)
π³ PAYMENT METHODS:
β’ Credit Card: 60%
β’ Debit Card: 30%
β’ Cash: 10%
π OBSERVATIONS:
β’ Highest spending on Wednesday ($420.50)
β’ "Groceries" category represents almost half of expenses
β’ Growing trend in credit card usage
π‘ RECOMMENDATIONS:
β’ Consider bulk purchases to reduce grocery expenses
β’ Diversify payment methods for better control
β’ Set weekly limit for entertainment
```
## π οΈ Troubleshooting
### Error: "FileNotFoundError"
- Ensure the `data/` directory exists
- Server creates the file automatically with the first expense
### Error: "Encoding issues"
- Server uses UTF-8 for special character compatibility
### Error: "Invalid date format"
- Use exact format: `YYYY-MM-DD`
- Example: `2024-01-18`
## π License
MIT License
## π Support
For issues and questions, open a ticket in the project repository.
---
**Start tracking your expenses intelligently!** π