Skip to main content
Glama
README.md6.51 kB
# Hive Mind MCP Server **Intelligent documentation system for codebases that creates living documentation as you build.** Hive Mind is an MCP (Model Context Protocol) server that automatically generates `hivemind.md` and `flowchart.mmd` at every directory level, creating a navigable spider-web of documentation that: - Works in **real-time** as code is built - Can **retroactively** document existing codebases - Preserves **user requirements** and architectural decisions - Enables **AI navigation** via anchor points - Works with any context window size (8k to 200k tokens) ## Installation ### Quick Start (Recommended) You can run the server directly using `uvx` (no installation required): ```json { "mcpServers": { "hive-mind": { "command": "uvx", "args": ["mcp-hivemind-server"] } } } ``` ### Install via pip ```bash pip install mcp-hivemind-server ``` ### Install from Source (Development) ```bash # Clone the repository git clone https://github.com/Jahanzaib-Kaleem/hive-mind-mcp.git cd hive-mind-mcp # Create virtual environment python -m venv venv venv\Scripts\activate # Windows # source venv/bin/activate # macOS/Linux # Install dependencies pip install -r requirements.txt ``` ### Requirements - Python 3.11 or higher - Dependencies: `mcp`, `tree-sitter`, `tree-sitter-languages`, `aiofiles`, `pyyaml` ## Configuration ### For Antigravity / Claude Desktop Edit your MCP configuration file: **Windows**: `%APPDATA%\Claude\claude_desktop_config.json` **macOS**: `~/Library/Application Support/Claude/claude_desktop_config.json` **Linux**: `~/.config/claude/claude_desktop_config.json` **Option 1: Using `uvx` (Easiest)** ```json { "mcpServers": { "hive-mind": { "command": "uvx", "args": ["mcp-hivemind-server"] } } } ``` **Option 2: Using pip installation** ```json { "mcpServers": { "hive-mind": { "command": "hive-mind", "args": [] } } } ``` **Option 3: Using Source Code** ```json { "mcpServers": { "hive-mind": { "command": "python", "args": ["C:/path/to/hive-mind-mcp/server.py"] } } } ``` ### For Cursor 1. Open Cursor Settings 2. Navigate to **Features → MCP Servers** 3. Add new server: - **Name**: `hive-mind` - **Type**: `stdio` - **Command**: `uvx` - **Args**: `mcp-hivemind-server` ## Usage ### Real-time Documentation While coding, ask your AI assistant: > "Document this code as we build it" The AI will call `document_current_work` to capture: - Code structure (functions, imports, exports) - User requirements and constraints - Warnings and gotchas - Next steps and TODOs - How the code works ### Retroactive Documentation For existing codebases, ask: > "Document my entire codebase with hive-mind" The AI will call `build_hive` to: - Walk the entire directory tree - Parse all code files - Generate documentation at each level - Create connection graphs ### Guided Hive Build (Recommended) For **AI-enriched** documentation where YOU provide the context: > "Start a guided hive build on my codebase" **How it works:** 1. MCP discovers all directories 2. For each directory, MCP shows you the structure (files, functions) 3. **YOU read the actual code** and understand what it does 4. YOU call `continue_hive_build` with your explanation 5. MCP writes `hivemind.md` with both structure AND your context 6. Repeat until all directories are documented This creates documentation with **intelligent context from the AI** (you!), not just dry parsing. ### Navigation Ask AI to navigate your codebase: > "Show me the auth system context" > "Find the validateSession function" > "Trace what uses the database module" ## Tools ### Core Tools | Tool | Description | |------|-------------| | `document_current_work` | Real-time documentation while building code | | `build_hive` | Auto-document entire codebase (structure only) | | `navigate_to` | Load context from anchor point | | `find_function` | Search for function across codebase | | `trace_usage` | Find dependencies and dependents | | `update_hivemind` | Update docs when code changes | ### Guided Build Tools | Tool | Description | |------|-------------| | `start_hive_build` | Start guided build, returns first directory for YOU to document | | `continue_hive_build` | Submit YOUR context, get next directory | | `get_hive_status` | Check progress of guided build | ## Generated Files ### hivemind.md Each directory gets a `hivemind.md` file containing: **AI Context Sections** (above the line): - What This Does - Purpose and role - User Requirements - Constraints and preferences - Important Notes - Warnings and gotchas - Next Steps - TODOs and planned work - How It Works - Key patterns and logic **Dry Logic Sections** (below the line): - Files at This Level - Functions Defined - Dependencies - Exports - Connections - Navigation - Metrics ### flowchart.mmd Mermaid diagram showing: - Current directory (purple center node) - Parent directory (gray) - Child directories (green) - Upstream dependencies (orange) - Downstream dependents (cyan) ## Anchor Points Navigate using anchor points in format: `anchor://path/to/directory` Example: ``` anchor://project/src/components/auth ``` ## Testing ```bash # Run all tests python -m pytest tests/ -v # Run specific test file python -m pytest tests/test_parser.py -v # Run with coverage python -m pytest tests/ --cov=. --cov-report=html ``` ## Project Structure ``` hive-mind-mcp/ ├── server.py # Main MCP server entry point ├── parser.py # Code structure extraction (tree-sitter) ├── generator.py # Markdown/Mermaid generation ├── enrichment.py # AI context integration ├── navigator.py # Anchor point navigation ├── config.py # Configuration constants ├── utils.py # Helper functions ├── requirements.txt # Python dependencies ├── README.md # This file ├── .gitignore └── tests/ ├── test_parser.py ├── test_generator.py └── test_integration.py ``` ## Supported Languages - TypeScript (`.ts`, `.tsx`) - JavaScript (`.js`, `.jsx`, `.mjs`, `.cjs`) - Python (`.py`) ## Optional AI Enrichment Set `ANTHROPIC_API_KEY` environment variable to enable automatic AI-generated context: ```bash export ANTHROPIC_API_KEY=your_key_here ``` Then use `build_hive` with `enrich_with_ai: true`. ## License MIT

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/Jahanzaib-Kaleem/hive-mind-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server