# DollhouseMCP Capability Index
ALWAYS check this index FIRST. It provides 97% token reduction.
## Layer 1: Element Search Hierarchy
ELEMENT_SEARCH_HIERARCHY:
DEFAULT ORDER (when location unspecified):
1. Active (already loaded) - 0 tokens
2. Local (~/.dollhouse/portfolio) - 50 tokens
3. GitHub (user's portfolio) - 100 tokens
4. Collection (community library) - 150 tokens
OVERRIDE: User intent always takes precedence
- "search the collection for..." โ Go directly to collection
- "check my GitHub for..." โ Go directly to GitHub portfolio
- "look in my local..." โ Go directly to local portfolio
- "is there an active..." โ Check only active elements
## Layer 2: Tool Capabilities
TOOL_CAPABILITIES:
search_portfolio: FINDS elements in local storage
search_collection: FINDS elements in community library
portfolio_element_manager: MANAGES GitHub portfolio sync
get_active_elements: CHECKS what's currently loaded
activate_element: LOADS element into context
create_element: CREATES new element
edit_element: MODIFIES existing element
list_elements: LISTS available elements by type
validate_element: VERIFIES element correctness
## Layer 3: Element Capabilities
ELEMENT_CAPABILITIES:
memories:
PROVIDE: Contextual information on topics
PERSIST: Information across sessions
AUGMENT: Current context with history
personas:
ALTER: Behavioral patterns
PROVIDE: Specialized expertise
SHAPE: Response style
skills:
PROVIDE: Specific capabilities
EXECUTE: Defined procedures
ENHANCE: Task performance
## Layer 4: Workflow Processes
WORKFLOW_PROCESSES:
"I need information about X" โ
FIRST: Check active memories
THEN: Use search_portfolio
THEN: Use portfolio_element_manager
FINALLY: Use search_collection
"Help me debug" โ
CHECK: Active skills/personas
SEARCH: Local portfolio
SEARCH: GitHub portfolio
SEARCH: Collection
"Remember this" โ
CHECK: Active memories
IF_EXISTS: Use edit_element
IF_NOT: Use create_element
ENSURE: activate_element
CRITICAL: This index structure provides 97% token reduction compared to loading all elements.
MCP directory API
We provide all the information about MCP servers via our MCP API.
curl -X GET 'https://glama.ai/api/mcp/v1/servers/DollhouseMCP/DollhouseMCP'
If you have feedback or need assistance with the MCP directory API, please join our Discord server