Skip to main content
Glama

translator-ai

by DatanoiseTV
246
1
  • Apple
  • Linux

translator-ai

Fast and efficient JSON i18n translator supporting multiple AI providers (Google Gemini, OpenAI & Ollama/DeepSeek) with intelligent caching, multi-file deduplication, and MCP integration.

Features

  • Multiple AI Providers: Choose between Google Gemini, OpenAI (cloud) or Ollama/DeepSeek (local) for translations
  • Multi-File Support: Process multiple files with automatic deduplication to save API calls
  • Incremental Caching: Only translates new or modified strings, dramatically reducing API calls
  • Batch Processing: Intelligently batches translations for optimal performance
  • Path Preservation: Maintains exact JSON structure including nested objects and arrays
  • Cross-Platform: Works on Windows, macOS, and Linux with automatic cache directory detection
  • Developer Friendly: Built-in performance statistics and progress indicators
  • Cost Effective: Minimizes API usage through smart caching and deduplication
  • Language Detection: Automatically detect source language instead of assuming English
  • Multiple Target Languages: Translate to multiple languages in a single command
  • Translation Metadata: Optionally include translation details in output files for tracking
  • Dry Run Mode: Preview what would be translated without making API calls
  • Format Preservation: Maintains URLs, emails, dates, numbers, and template variables unchanged

Installation

npm install -g translator-ai

Local Installation

npm install translator-ai

Configuration

Option 1: Google Gemini API (Cloud)

Create a .env file in your project root or set the environment variable:

GEMINI_API_KEY=your_gemini_api_key_here

Get your API key from Google AI Studio.

Option 2: OpenAI API (Cloud)

Create a .env file in your project root or set the environment variable:

OPENAI_API_KEY=your_openai_api_key_here

Get your API key from OpenAI Platform.

Option 3: Ollama with DeepSeek-R1 (Local)

For completely local translation without API costs:

  1. Install Ollama
  2. Pull the DeepSeek-R1 model:
    ollama pull deepseek-r1:latest
  3. Use the --provider ollama flag:
    translator-ai source.json -l es -o spanish.json --provider ollama

Usage

Basic Usage

# Translate a single file translator-ai source.json -l es -o spanish.json # Translate multiple files with deduplication translator-ai src/locales/en/*.json -l es -o "{dir}/{name}.{lang}.json" # Use glob patterns translator-ai "src/**/*.en.json" -l fr -o "{dir}/{name}.fr.json"

Command Line Options

translator-ai <inputFiles...> [options] Arguments: inputFiles Path(s) to source JSON file(s) or glob patterns Options: -l, --lang <langCodes> Target language code(s), comma-separated for multiple -o, --output <pattern> Output file path or pattern --stdout Output to stdout instead of file --stats Show detailed performance statistics --no-cache Disable incremental translation cache --cache-file <path> Custom cache file path --provider <type> Translation provider: gemini, openai, or ollama (default: gemini) --ollama-url <url> Ollama API URL (default: http://localhost:11434) --ollama-model <model> Ollama model name (default: deepseek-r1:latest) --gemini-model <model> Gemini model name (default: gemini-2.0-flash-lite) --openai-model <model> OpenAI model name (default: gpt-4o-mini) --list-providers List available translation providers --verbose Enable verbose output for debugging --detect-source Auto-detect source language instead of assuming English --dry-run Preview what would be translated without making API calls --preserve-formats Preserve URLs, emails, numbers, dates, and other formats --metadata Add translation metadata to output files (may break some i18n parsers) --sort-keys Sort output JSON keys alphabetically --check-keys Verify all source keys exist in output (exit with error if keys are missing) -h, --help Display help -V, --version Display version Output Pattern Variables (for multiple files): {dir} - Original directory path {name} - Original filename without extension {lang} - Target language code

Examples

Translate a single file
translator-ai en.json -l es -o es.json
Translate multiple files with pattern
# All JSON files in a directory translator-ai locales/en/*.json -l es -o "locales/es/{name}.json" # Recursive glob pattern translator-ai "src/**/en.json" -l fr -o "{dir}/fr.json" # Multiple specific files translator-ai file1.json file2.json file3.json -l de -o "{name}.de.json"
Translate with deduplication savings
# Shows statistics including how many API calls were saved translator-ai src/i18n/*.json -l ja -o "{dir}/{name}.{lang}.json" --stats
Output to stdout (useful for piping)
translator-ai en.json -l de --stdout > de.json
Parse output with jq
translator-ai en.json -l de --stdout | jq
Disable caching for fresh translation
translator-ai en.json -l ja -o ja.json --no-cache
Use custom cache location
translator-ai en.json -l ko -o ko.json --cache-file /path/to/cache.json
Use Ollama for local translation
# Basic usage with Ollama translator-ai en.json -l es -o es.json --provider ollama # Use a different Ollama model translator-ai en.json -l fr -o fr.json --provider ollama --ollama-model llama2:latest # Connect to remote Ollama instance translator-ai en.json -l de -o de.json --provider ollama --ollama-url http://192.168.1.100:11434 # Check available providers translator-ai --list-providers
Advanced Features
# Detect source language automatically translator-ai content.json -l es -o spanish.json --detect-source # Translate to multiple languages at once translator-ai en.json -l es,fr,de,ja -o translations/{lang}.json # Dry run - see what would be translated without making API calls translator-ai en.json -l es -o es.json --dry-run # Preserve formats (URLs, emails, dates, numbers, template variables) translator-ai app.json -l fr -o app-fr.json --preserve-formats # Include translation metadata (disabled by default to ensure compatibility) translator-ai en.json -l fr -o fr.json --metadata # Sort keys alphabetically for consistent output translator-ai en.json -l fr -o fr.json --sort-keys # Verify all keys are present in the translation translator-ai en.json -l fr -o fr.json --check-keys # Use a different Gemini model translator-ai en.json -l es -o es.json --gemini-model gemini-2.5-flash # Combine features translator-ai src/**/*.json -l es,fr,de -o "{dir}/{name}.{lang}.json" \ --detect-source --preserve-formats --stats --check-keys

Available Gemini Models

The --gemini-model option allows you to choose from various Gemini models. Popular options include:

  • gemini-2.0-flash-lite (default) - Fast and efficient for most translations
  • gemini-2.5-flash - Enhanced performance with newer capabilities
  • gemini-pro - More sophisticated understanding for complex translations
  • gemini-1.5-pro - Previous generation pro model
  • gemini-1.5-flash - Previous generation fast model

Example usage:

# Use the latest flash model translator-ai en.json -l es -o es.json --gemini-model gemini-2.5-flash # Use the default lightweight model translator-ai en.json -l fr -o fr.json --gemini-model gemini-2.0-flash-lite

Available OpenAI Models

The --openai-model option allows you to choose from various OpenAI models. Popular options include:

  • gpt-4o-mini (default) - Cost-effective and fast for most translations
  • gpt-4o - Most capable model with advanced understanding
  • gpt-4-turbo - Previous generation flagship model
  • gpt-3.5-turbo - Fast and efficient for simpler translations

Example usage:

# Use OpenAI with the default model translator-ai en.json -l es -o es.json --provider openai # Use GPT-4o for complex translations translator-ai en.json -l ja -o ja.json --provider openai --openai-model gpt-4o # Use GPT-3.5-turbo for faster, simpler translations translator-ai en.json -l fr -o fr.json --provider openai --openai-model gpt-3.5-turbo

Translation Metadata

When enabled with the --metadata flag, translator-ai adds metadata to help track translations:

{ "_translator_metadata": { "tool": "translator-ai v1.1.0", "repository": "https://github.com/DatanoiseTV/translator-ai", "provider": "Google Gemini", "source_language": "English", "target_language": "fr", "timestamp": "2025-06-20T12:34:56.789Z", "total_strings": 42, "source_file": "en.json" }, "greeting": "Bonjour", "farewell": "Au revoir" }

Metadata is disabled by default to ensure compatibility with i18n parsers. Use --metadata to enable it.

Key Sorting

Use the --sort-keys flag to sort all JSON keys alphabetically in the output:

translator-ai en.json -l es -o es.json --sort-keys

This ensures consistent ordering across translations and makes diffs cleaner. Keys are sorted:

  • Case-insensitively (a, B, c, not B, a, c)
  • Recursively through all nested objects
  • Arrays maintain their element order

Key Verification

Use the --check-keys flag to ensure translation completeness:

translator-ai en.json -l es -o es.json --check-keys

This feature:

  • Verifies all source keys exist in the translated output
  • Reports any missing keys with their full paths
  • Exits with error code 1 if any keys are missing
  • Helps catch translation API failures or formatting issues
  • Ignores metadata keys when checking

Supported Language Codes

It should support any standardized language codes.

How It Works

  1. Parsing: Reads and flattens your JSON structure into paths
  2. Deduplication: When processing multiple files, identifies shared strings
  3. Caching: Checks cache for previously translated strings
  4. Diffing: Identifies new or modified strings needing translation
  5. Batching: Groups unique strings into optimal batch sizes for API efficiency
  6. Translation: Sends batches to selected provider (Gemini API or local Ollama)
  7. Reconstruction: Rebuilds the exact JSON structure with translations
  8. Caching: Updates cache with new translations for future use

Multi-File Deduplication

When translating multiple files, translator-ai automatically:

  • Identifies duplicate strings across files
  • Translates each unique string only once
  • Applies the same translation consistently across all files
  • Saves significant API calls and ensures consistency

Example: If 10 files share 50% of their strings, you save ~50% on API calls!

Cache Management

Default Cache Locations

  • Windows: %APPDATA%\translator-ai\translation-cache.json
  • macOS: ~/Library/Caches/translator-ai/translation-cache.json
  • Linux: ~/.cache/translator-ai/translation-cache.json

The cache file stores translations indexed by:

  • Source file path
  • Target language
  • SHA-256 hash of source string

This ensures that:

  • Modified strings are retranslated
  • Removed strings are pruned from cache
  • Multiple projects can share the same cache without conflicts

Provider Comparison

Google Gemini

  • Pros: Fast, accurate, handles large batches efficiently
  • Cons: Requires API key, has usage costs
  • Available Models:
    • gemini-2.0-flash-lite (default) - Fastest, most cost-effective
    • gemini-pro - Balanced performance
    • gemini-1.5-pro - Advanced capabilities
    • gemini-1.5-flash - Fast with good quality
  • Best for: Production use, large projects, when accuracy is critical

Ollama (Local)

  • Pros: Free, runs locally, no API limits, privacy-friendly
  • Cons: Slower, requires local resources, model download needed
  • Best for: Development, privacy-sensitive data, cost-conscious projects

Performance Tips

  1. Use caching (enabled by default) to minimize API calls
  2. Batch multiple files in the same session to leverage warm cache
  3. Use --stats flag to monitor performance and optimization opportunities
  4. Keep source files consistent to maximize cache hits
  5. For Ollama: Use a powerful machine for better performance

API Limits and Costs

Gemini API

  • Uses Gemini 2.0 Flash Lite model for optimal speed and cost
  • Chooses best batch size dynamically depending on input key count
  • Batches up to 100 strings per API call
  • Check Google's pricing for current rates

Ollama

  • No API costs - runs entirely on your hardware
  • Performance depends on your machine's capabilities
  • Supports various models with different speed/quality tradeoffs

Using with Model Context Protocol (MCP)

translator-ai can be used as an MCP server, allowing AI assistants like Claude Desktop to translate files directly.

MCP Configuration

Add to your Claude Desktop configuration:

macOS: ~/Library/Application Support/Claude/claude_desktop_config.json
Windows: %APPDATA%\Claude\claude_desktop_config.json

{ "mcpServers": { "translator-ai": { "command": "npx", "args": [ "-y", "translator-ai-mcp" ], "env": { "GEMINI_API_KEY": "your-gemini-api-key-here" // Or for Ollama: // "TRANSLATOR_PROVIDER": "ollama" } } } }

MCP Usage Examples

Once configured, you can ask Claude to translate files:

Human: Can you translate my English locale file to Spanish? Claude: I'll translate your English locale file to Spanish using translator-ai. <use_tool name="translate_json"> { "inputFile": "locales/en.json", "targetLanguage": "es", "outputFile": "locales/es.json" } </use_tool> Successfully translated! The file has been saved to locales/es.json.

For multiple files with deduplication:

Human: Translate all my English JSON files in the locales folder to German. Claude: I'll translate all your English JSON files to German with deduplication. <use_tool name="translate_multiple"> { "pattern": "locales/en/*.json", "targetLanguage": "de", "outputPattern": "locales/de/{name}.json", "showStats": true } </use_tool> Translation complete! Processed 5 files with 23% deduplication savings.

MCP Tools Available

  1. translate_json: Translate a single JSON file
    • inputFile: Path to source file
    • targetLanguage: Target language code
    • outputFile: Output file path
  2. translate_multiple: Translate multiple files with deduplication
    • pattern: File pattern or paths
    • targetLanguage: Target language code
    • outputPattern: Output pattern with {dir}, {name}, {lang} variables
    • showStats: Show deduplication statistics (optional)

Integration with Static Site Generators

Working with YAML Files (Hugo, Jekyll, etc.)

Since translator-ai works with JSON files, you'll need to convert YAML to JSON and back. Here's a practical workflow:

Setup YAML conversion tools
# Install yaml conversion tools npm install -g js-yaml # or pip install pyyaml
Hugo Example with YAML Conversion
  1. Create a translation script (translate-hugo.sh):
#!/bin/bash # translate-hugo.sh - Translate Hugo YAML i18n files # Function to translate YAML file translate_yaml() { local input_file=$1 local lang=$2 local output_file=$3 echo "Translating $input_file to $lang..." # Convert YAML to JSON npx js-yaml $input_file > temp_input.json # Translate JSON translator-ai temp_input.json -l $lang -o temp_output.json # Convert back to YAML npx js-yaml temp_output.json > $output_file # Cleanup rm temp_input.json temp_output.json } # Translate Hugo i18n files translate_yaml themes/your-theme/i18n/en.yaml es themes/your-theme/i18n/es.yaml translate_yaml themes/your-theme/i18n/en.yaml fr themes/your-theme/i18n/fr.yaml translate_yaml themes/your-theme/i18n/en.yaml de themes/your-theme/i18n/de.yaml
  1. Python-based converter for more complex scenarios:
#!/usr/bin/env python3 # hugo-translate.py import yaml import json import subprocess import sys import os def yaml_to_json(yaml_file): """Convert YAML to JSON""" with open(yaml_file, 'r', encoding='utf-8') as f: data = yaml.safe_load(f) return json.dumps(data, ensure_ascii=False, indent=2) def json_to_yaml(json_str): """Convert JSON back to YAML""" data = json.loads(json_str) return yaml.dump(data, allow_unicode=True, default_flow_style=False) def translate_yaml_file(input_yaml, target_lang, output_yaml): """Translate a YAML file using translator-ai""" # Create temp JSON file temp_json_in = 'temp_in.json' temp_json_out = f'temp_out_{target_lang}.json' try: # Convert YAML to JSON json_content = yaml_to_json(input_yaml) with open(temp_json_in, 'w', encoding='utf-8') as f: f.write(json_content) # Run translator-ai cmd = [ 'translator-ai', temp_json_in, '-l', target_lang, '-o', temp_json_out ] subprocess.run(cmd, check=True) # Read translated JSON and convert back to YAML with open(temp_json_out, 'r', encoding='utf-8') as f: translated_json = f.read() yaml_content = json_to_yaml(translated_json) # Write YAML output with open(output_yaml, 'w', encoding='utf-8') as f: f.write(yaml_content) print(f"✓ Translated {input_yaml} to {output_yaml}") finally: # Cleanup temp files for f in [temp_json_in, temp_json_out]: if os.path.exists(f): os.remove(f) # Usage if __name__ == "__main__": languages = ['es', 'fr', 'de', 'ja'] for lang in languages: translate_yaml_file( 'i18n/en.yaml', lang, f'i18n/{lang}.yaml' )
Node.js Solution with Proper YAML Handling

Create translate-yaml.js:

#!/usr/bin/env node const fs = require('fs'); const yaml = require('js-yaml'); const { execSync } = require('child_process'); const path = require('path'); function translateYamlFile(inputPath, targetLang, outputPath) { console.log(`Translating ${inputPath} to ${targetLang}...`); // Read and parse YAML const yamlContent = fs.readFileSync(inputPath, 'utf8'); const data = yaml.load(yamlContent); // Write temporary JSON const tempJsonIn = `temp_${path.basename(inputPath)}.json`; const tempJsonOut = `temp_${path.basename(inputPath)}_${targetLang}.json`; fs.writeFileSync(tempJsonIn, JSON.stringify(data, null, 2)); try { // Translate using translator-ai execSync(`translator-ai ${tempJsonIn} -l ${targetLang} -o ${tempJsonOut}`); // Read translated JSON const translatedData = JSON.parse(fs.readFileSync(tempJsonOut, 'utf8')); // Convert back to YAML const translatedYaml = yaml.dump(translatedData, { indent: 2, lineWidth: -1, noRefs: true }); // Write output YAML fs.writeFileSync(outputPath, translatedYaml); console.log(`✓ Created ${outputPath}`); } finally { // Cleanup [tempJsonIn, tempJsonOut].forEach(f => { if (fs.existsSync(f)) fs.unlinkSync(f); }); } } // Example usage const languages = ['es', 'fr', 'de']; languages.forEach(lang => { translateYamlFile( 'i18n/en.yaml', lang, `i18n/${lang}.yaml` ); });

Real-world Hugo Workflow

Hugo supports two translation methods: by filename (about.en.md, about.fr.md) or by content directory (content/en/, content/fr/). Here's how to automate both:

Method 1: Translation by Filename

Create hugo-translate-files.sh:

#!/bin/bash # Translate Hugo content files using filename convention SOURCE_LANG="en" TARGET_LANGS=("es" "fr" "de" "ja") # Find all English content files find content -name "*.${SOURCE_LANG}.md" | while read -r file; do # Extract base filename without language suffix base_name="${file%.${SOURCE_LANG}.md}" for lang in "${TARGET_LANGS[@]}"; do output_file="${base_name}.${lang}.md" # Skip if translation already exists if [ -f "$output_file" ]; then echo "Skipping $output_file (already exists)" continue fi # Extract front matter awk '/^---$/{p=1; next} p&&/^---$/{exit} p' "$file" > temp_frontmatter.yaml # Convert front matter to JSON npx js-yaml temp_frontmatter.yaml > temp_frontmatter.json # Translate front matter translator-ai temp_frontmatter.json -l "$lang" -o "temp_translated.json" # Convert back to YAML echo "---" > "$output_file" npx js-yaml temp_translated.json >> "$output_file" echo "---" >> "$output_file" # Copy content (you might want to translate this too) awk '/^---$/{p++} p==2{print}' "$file" | tail -n +2 >> "$output_file" echo "Created $output_file" done # Cleanup rm -f temp_frontmatter.yaml temp_frontmatter.json temp_translated.json done
Method 2: Translation by Content Directory
  1. Setup Hugo config (config.yaml):
defaultContentLanguage: en defaultContentLanguageInSubdir: false languages: en: contentDir: content/en languageName: English weight: 1 es: contentDir: content/es languageName: Español weight: 2 fr: contentDir: content/fr languageName: Français weight: 3 # Rest of your config...
  1. Create translation script (hugo-translate-dirs.js):
#!/usr/bin/env node const fs = require('fs-extra'); const path = require('path'); const yaml = require('js-yaml'); const { execSync } = require('child_process'); const glob = require('glob'); const SOURCE_LANG = 'en'; const TARGET_LANGS = ['es', 'fr', 'de']; async function translateHugoContent() { // Ensure target directories exist for (const lang of TARGET_LANGS) { await fs.ensureDir(`content/${lang}`); } // Find all content files in source language const files = glob.sync(`content/${SOURCE_LANG}/**/*.md`); for (const file of files) { const relativePath = path.relative(`content/${SOURCE_LANG}`, file); for (const lang of TARGET_LANGS) { const targetFile = path.join(`content/${lang}`, relativePath); // Skip if already translated if (await fs.pathExists(targetFile)) { console.log(`Skipping ${targetFile} (exists)`); continue; } await translateFile(file, targetFile, lang); } } } async function translateFile(sourceFile, targetFile, targetLang) { console.log(`Translating ${sourceFile} to ${targetLang}...`); const content = await fs.readFile(sourceFile, 'utf8'); const frontMatterMatch = content.match(/^---\n([\s\S]*?)\n---/); if (!frontMatterMatch) { // No front matter, just copy await fs.ensureDir(path.dirname(targetFile)); await fs.copyFile(sourceFile, targetFile); return; } // Parse front matter const frontMatter = yaml.load(frontMatterMatch[1]); const body = content.substring(frontMatterMatch[0].length); // Extract translatable fields const translatable = { title: frontMatter.title || '', description: frontMatter.description || '', summary: frontMatter.summary || '', keywords: frontMatter.keywords || [] }; // Save for translation await fs.writeJson('temp_meta.json', translatable); // Translate execSync(`translator-ai temp_meta.json -l ${targetLang} -o temp_translated.json`); // Read translations const translated = await fs.readJson('temp_translated.json'); // Update front matter Object.assign(frontMatter, translated); // Write translated file await fs.ensureDir(path.dirname(targetFile)); const newContent = `---\n${yaml.dump(frontMatter)}---${body}`; await fs.writeFile(targetFile, newContent); // Cleanup await fs.remove('temp_meta.json'); await fs.remove('temp_translated.json'); console.log(`✓ Created ${targetFile}`); } // Run translation translateHugoContent().catch(console.error);
Hugo i18n Files Translation
  1. Install dependencies:
npm install -g translator-ai js-yaml
  1. Create a Makefile for easy translation:
# Makefile for Hugo translations LANGUAGES := es fr de ja zh SOURCE_YAML := i18n/en.yaml THEME_DIR := themes/your-theme .PHONY: translate translate: $(foreach lang,$(LANGUAGES),translate-$(lang)) translate-%: @echo "Translating to $*..." @npx js-yaml $(SOURCE_YAML) > temp.json @translator-ai temp.json -l $* -o temp_$*.json @npx js-yaml temp_$*.json > i18n/$*.yaml @rm temp.json temp_$*.json @echo "✓ Created i18n/$*.yaml" .PHONY: translate-theme translate-theme: @for lang in $(LANGUAGES); do \ make translate-theme-$$lang; \ done translate-theme-%: @echo "Translating theme to $*..." @npx js-yaml $(THEME_DIR)/i18n/en.yaml > temp_theme.json @translator-ai temp_theme.json -l $* -o temp_theme_$*.json @npx js-yaml temp_theme_$*.json > $(THEME_DIR)/i18n/$*.yaml @rm temp_theme.json temp_theme_$*.json .PHONY: clean clean: @rm -f temp*.json # Translate everything .PHONY: all all: translate translate-theme

Usage:

# Translate to all languages make all # Translate to specific language make translate-es # Translate theme files make translate-theme
Complete Hugo Translation Workflow

Here's a comprehensive script that handles both content and i18n translations:

#!/usr/bin/env node // hugo-complete-translator.js const fs = require('fs-extra'); const path = require('path'); const yaml = require('js-yaml'); const { execSync } = require('child_process'); const glob = require('glob'); class HugoTranslator { constructor(targetLanguages = ['es', 'fr', 'de']) { this.targetLanguages = targetLanguages; this.tempFiles = []; } async translateSite() { console.log('Starting Hugo site translation...\n'); // 1. Translate i18n files await this.translateI18nFiles(); // 2. Translate content await this.translateContent(); // 3. Update config await this.updateConfig(); console.log('\nTranslation complete!'); } async translateI18nFiles() { console.log('Translating i18n files...'); const i18nFiles = glob.sync('i18n/en.{yaml,yml,toml}'); for (const file of i18nFiles) { const ext = path.extname(file); for (const lang of this.targetLanguages) { const outputFile = `i18n/${lang}${ext}`; if (await fs.pathExists(outputFile)) { console.log(` Skipping ${outputFile} (exists)`); continue; } // Convert to JSON const tempJson = `temp_i18n_${lang}.json`; await this.convertToJson(file, tempJson); // Translate const translatedJson = `temp_i18n_${lang}_translated.json`; execSync(`translator-ai ${tempJson} -l ${lang} -o ${translatedJson}`); // Convert back await this.convertFromJson(translatedJson, outputFile, ext); // Cleanup await fs.remove(tempJson); await fs.remove(translatedJson); console.log(` ✓ Created ${outputFile}`); } } } async translateContent() { console.log('\nTranslating content...'); // Detect translation method const useContentDirs = await fs.pathExists('content/en'); if (useContentDirs) { await this.translateContentByDirectory(); } else { await this.translateContentByFilename(); } } async translateContentByDirectory() { const files = glob.sync('content/en/**/*.md'); for (const file of files) { const relativePath = path.relative('content/en', file); for (const lang of this.targetLanguages) { const targetFile = path.join('content', lang, relativePath); if (await fs.pathExists(targetFile)) continue; await this.translateMarkdownFile(file, targetFile, lang); } } } async translateContentByFilename() { const files = glob.sync('content/**/*.en.md'); for (const file of files) { const baseName = file.replace('.en.md', ''); for (const lang of this.targetLanguages) { const targetFile = `${baseName}.${lang}.md`; if (await fs.pathExists(targetFile)) continue; await this.translateMarkdownFile(file, targetFile, lang); } } } async translateMarkdownFile(sourceFile, targetFile, targetLang) { const content = await fs.readFile(sourceFile, 'utf8'); const frontMatterMatch = content.match(/^---\n([\s\S]*?)\n---/); if (!frontMatterMatch) { await fs.copy(sourceFile, targetFile); return; } const frontMatter = yaml.load(frontMatterMatch[1]); const body = content.substring(frontMatterMatch[0].length); // Translate front matter const translatable = this.extractTranslatableFields(frontMatter); const tempJson = `temp_content_${path.basename(sourceFile)}.json`; const translatedJson = `${tempJson}.translated`; await fs.writeJson(tempJson, translatable); execSync(`translator-ai ${tempJson} -l ${targetLang} -o ${translatedJson}`); const translated = await fs.readJson(translatedJson); Object.assign(frontMatter, translated); // Write translated file await fs.ensureDir(path.dirname(targetFile)); const newContent = `---\n${yaml.dump(frontMatter)}---${body}`; await fs.writeFile(targetFile, newContent); // Cleanup await fs.remove(tempJson); await fs.remove(translatedJson); console.log(` ✓ ${targetFile}`); } extractTranslatableFields(frontMatter) { const fields = ['title', 'description', 'summary', 'keywords', 'tags']; const translatable = {}; fields.forEach(field => { if (frontMatter[field]) { translatable[field] = frontMatter[field]; } }); return translatable; } async convertToJson(inputFile, outputFile) { const ext = path.extname(inputFile); const content = await fs.readFile(inputFile, 'utf8'); let data; if (ext === '.yaml' || ext === '.yml') { data = yaml.load(content); } else if (ext === '.toml') { // You'd need a TOML parser here throw new Error('TOML support not implemented in this example'); } await fs.writeJson(outputFile, data, { spaces: 2 }); } async convertFromJson(inputFile, outputFile, format) { const data = await fs.readJson(inputFile); let content; if (format === '.yaml' || format === '.yml') { content = yaml.dump(data, { indent: 2, lineWidth: -1, noRefs: true }); } else if (format === '.toml') { throw new Error('TOML support not implemented in this example'); } await fs.writeFile(outputFile, content); } async updateConfig() { console.log('\nUpdating Hugo config...'); const configFile = glob.sync('config.{yaml,yml,toml,json}')[0]; if (!configFile) return; // This is a simplified example - you'd need to properly parse and update console.log(' ! Remember to update your config.yaml with language settings'); } } // Run the translator if (require.main === module) { const translator = new HugoTranslator(['es', 'fr', 'de']); translator.translateSite().catch(console.error); } module.exports = HugoTranslator;
Using with Hugo Modules

If you're using Hugo Modules, you can create a translation module:

// go.mod module github.com/yourusername/hugo-translator go 1.19 require ( github.com/yourusername/your-theme v1.0.0 )

Then in your package.json:

{ "scripts": { "translate": "node hugo-complete-translator.js", "translate:content": "node hugo-complete-translator.js --content-only", "translate:i18n": "node hugo-complete-translator.js --i18n-only", "build": "npm run translate && hugo" } }

Jekyll with YAML Front Matter

For Jekyll posts with YAML front matter:

#!/usr/bin/env python3 # translate-jekyll-posts.py import os import yaml import json import subprocess import frontmatter def translate_jekyll_post(post_path, target_lang, output_dir): """Translate Jekyll post including front matter""" # Load post with front matter post = frontmatter.load(post_path) # Extract translatable front matter fields translatable = { 'title': post.metadata.get('title', ''), 'description': post.metadata.get('description', ''), 'excerpt': post.metadata.get('excerpt', '') } # Save as JSON for translation with open('temp_meta.json', 'w', encoding='utf-8') as f: json.dump(translatable, f, ensure_ascii=False, indent=2) # Translate subprocess.run([ 'translator-ai', 'temp_meta.json', '-l', target_lang, '-o', f'temp_meta_{target_lang}.json' ]) # Load translations with open(f'temp_meta_{target_lang}.json', 'r', encoding='utf-8') as f: translations = json.load(f) # Update post metadata for key, value in translations.items(): if value: # Only update if translation exists post.metadata[key] = value # Add language to metadata post.metadata['lang'] = target_lang # Save translated post output_path = os.path.join(output_dir, os.path.basename(post_path)) with open(output_path, 'w', encoding='utf-8') as f: f.write(frontmatter.dumps(post)) # Cleanup os.remove('temp_meta.json') os.remove(f'temp_meta_{target_lang}.json') # Translate all posts for lang in ['es', 'fr', 'de']: os.makedirs(f'_posts/{lang}', exist_ok=True) for post in os.listdir('_posts/en'): if post.endswith('.md'): translate_jekyll_post( f'_posts/en/{post}', lang, f'_posts/{lang}' )

Tips for YAML/JSON Conversion

  1. Preserve formatting: Use js-yaml with proper options to maintain YAML structure
  2. Handle special characters: Ensure proper encoding (UTF-8) throughout
  3. Validate output: Some YAML features (anchors, aliases) may need special handling
  4. Consider TOML: For Hugo, you might also need to handle TOML config files

Alternative: Direct YAML Support (Feature Request)

If you frequently work with YAML files, consider creating a wrapper script that handles conversion automatically, or request YAML support as a feature for translator-ai.

Development

Building from source

git clone https://github.com/DatanoiseTV/translator-ai.git cd translator-ai npm install npm run build

Testing locally

npm start -- test.json -l es -o output.json

License

This project requires attribution for both commercial and non-commercial use. See LICENSE file for details.

Contributing

Contributions are welcome! Please feel free to submit a Pull Request.

Support

For issues, questions, or suggestions, please open an issue on GitHub.

If you find this tool useful, consider supporting the development:

Related MCP Servers

  • A
    security
    A
    license
    A
    quality
    Enables efficient web search integration with Jina.ai's Search API, offering clean, LLM-optimized content retrieval with support for various content types and configurable caching.
    Last updated -
    1
    22
    3
    JavaScript
    MIT License
  • -
    security
    F
    license
    -
    quality
    Provides browser automation capabilities through an API endpoint that interprets natural language commands to perform web tasks using OpenAI's GPT models.
    Last updated -
    Python
  • A
    security
    A
    license
    A
    quality
    A server that enhances AI assistants with the ability to update your JSON Resume by analyzing your coding projects, automatically extracting skills and generating professional descriptions.
    Last updated -
    3
    32
    39
    TypeScript
    The Unlicense
    • Apple
    • Linux
  • -
    security
    -
    license
    -
    quality
    A ModelContextProtocol server providing high-quality translation services with a three-stage translation workflow (analysis, segmented translation, full-text review) that supports multiple languages and integrates with Claude and OpenAI-compatible models.
    Last updated -
    2
    TypeScript

View all related MCP servers

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/DatanoiseTV/translator-ai'

If you have feedback or need assistance with the MCP directory API, please join our Discord server