Skip to main content
Glama

MCP Prompt Cleaner

by Da-Colon
schemas.py1.46 kB
from typing import List, Literal, Optional from pydantic import BaseModel, Field class CleanPromptInput(BaseModel): """Input schema for the clean_prompt tool""" raw_prompt: str = Field(description="The user's raw, unpolished prompt") context: str = Field(default="", description="Additional context about the task") mode: Literal["code", "general"] = "general" temperature: float = Field(default=0.2, ge=0.0, le=1.0) class QualityScore(BaseModel): """Quality assessment of the cleaned prompt""" score: int = Field(ge=1, le=5, description="Quality score from 1-5") reasons: List[str] = Field( default_factory=list, description="Reasons for the score" ) class CleanPromptOutput(BaseModel): """Output schema for the clean_prompt tool""" cleaned: str = Field(description="The enhanced and cleaned prompt") notes: List[str] = Field( default_factory=list, description="Notes about the cleaning process" ) open_questions: List[str] = Field( default_factory=list, description="Open questions about the prompt" ) risks: List[str] = Field( default_factory=list, description="Potential risks or issues identified" ) unchanged: bool = Field( default=False, description="Whether the prompt was already excellent" ) quality: Optional[QualityScore] = Field( default=None, description="Quality assessment of the cleaned prompt" )

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/Da-Colon/mcp-py-prompt-cleaner'

If you have feedback or need assistance with the MCP directory API, please join our Discord server