README.md•2.04 kB
# Claude-Powered MCP Agent for Smart Supply Chain
This project simulates a smart warehouse system powered by Claude using Model Context Protocol (MCP) patterns. The system manages inventory, automated guided vehicles (AGVs), and order processing through a set of specialized agents coordinated by Claude.
## Project Structure
```
claude-mcp-agent-for-supply-chain/
├── agents/ # MCP agent modules
├── simulation/ # Warehouse simulation logic
├── api/ # FastAPI endpoints
├── logs/ # Action and decision logs
├── claude_interface.py # Interface to Claude API
├── main.py # Main application entry point
```
## Features
- **MCP-style Modular Agents**: InventoryManager, AGVPlanner, RestockAgent, Coordinator
- **Warehouse Simulation**: Inventory tracking, AGV movement, order processing
- **Claude Integration**: Uses Anthropic's Claude API for decision-making
- **API Endpoints**: FastAPI-based endpoints for interacting with the system
## Setup
1. Create a virtual environment:
```
python -m venv venv
```
2. Activate the virtual environment:
- Windows: `venv\Scripts\activate`
- Unix/MacOS: `source venv/bin/activate`
3. Install dependencies:
```
pip install -r requirements.txt
```
4. Set up environment variables:
```
cp claude.env.template claude.env
```
Then edit `claude.env` to add your Anthropic API key.
5. Run the application:
```
python main.py
```
## API Endpoints
- `GET /inventory`: Get current inventory status
- `GET /agvs`: Get status of all AGVs
- `POST /orders`: Create a new order
- `POST /ask-agent`: Send a query to Claude agent
- `GET /logs`: Get recent action logs
## Example Usage
Example prompt to Claude:
> The inventory for Product X is at 5 units, below the threshold of 10. Two AGVs are available. Suggest an optimal action.
Claude will analyze the situation and return structured actions that the system can execute.
## License
MIT