MCP 3D Printer Server

by DMontgomery40
Verified
import NodeUniformsGroup from '../../common/nodes/NodeUniformsGroup.js'; import NodeSampler from '../../common/nodes/NodeSampler.js'; import { NodeSampledTexture, NodeSampledCubeTexture, NodeSampledTexture3D } from '../../common/nodes/NodeSampledTexture.js'; import NodeUniformBuffer from '../../common/nodes/NodeUniformBuffer.js'; import NodeStorageBuffer from '../../common/nodes/NodeStorageBuffer.js'; import { NodeBuilder, CodeNode } from '../../../nodes/Nodes.js'; import { getFormat } from '../utils/WebGPUTextureUtils.js'; import WGSLNodeParser from './WGSLNodeParser.js'; import { NodeAccess } from '../../../nodes/core/constants.js'; import VarNode from '../../../nodes/core/VarNode.js'; import ExpressionNode from '../../../nodes/code/ExpressionNode.js'; import { NoColorSpace, FloatType, RepeatWrapping, ClampToEdgeWrapping, MirroredRepeatWrapping, NearestFilter } from '../../../constants.js'; // GPUShaderStage is not defined in browsers not supporting WebGPU const GPUShaderStage = ( typeof self !== 'undefined' ) ? self.GPUShaderStage : { VERTEX: 1, FRAGMENT: 2, COMPUTE: 4 }; const accessNames = { [ NodeAccess.READ_ONLY ]: 'read', [ NodeAccess.WRITE_ONLY ]: 'write', [ NodeAccess.READ_WRITE ]: 'read_write' }; const wrapNames = { [ RepeatWrapping ]: 'repeat', [ ClampToEdgeWrapping ]: 'clamp', [ MirroredRepeatWrapping ]: 'mirror' }; const gpuShaderStageLib = { 'vertex': GPUShaderStage ? GPUShaderStage.VERTEX : 1, 'fragment': GPUShaderStage ? GPUShaderStage.FRAGMENT : 2, 'compute': GPUShaderStage ? GPUShaderStage.COMPUTE : 4 }; const supports = { instance: true, swizzleAssign: false, storageBuffer: true }; const wgslFnOpLib = { '^^': 'tsl_xor' }; const wgslTypeLib = { float: 'f32', int: 'i32', uint: 'u32', bool: 'bool', color: 'vec3<f32>', vec2: 'vec2<f32>', ivec2: 'vec2<i32>', uvec2: 'vec2<u32>', bvec2: 'vec2<bool>', vec3: 'vec3<f32>', ivec3: 'vec3<i32>', uvec3: 'vec3<u32>', bvec3: 'vec3<bool>', vec4: 'vec4<f32>', ivec4: 'vec4<i32>', uvec4: 'vec4<u32>', bvec4: 'vec4<bool>', mat2: 'mat2x2<f32>', mat3: 'mat3x3<f32>', mat4: 'mat4x4<f32>' }; const wgslCodeCache = {}; const wgslPolyfill = { tsl_xor: new CodeNode( 'fn tsl_xor( a : bool, b : bool ) -> bool { return ( a || b ) && !( a && b ); }' ), mod_float: new CodeNode( 'fn tsl_mod_float( x : f32, y : f32 ) -> f32 { return x - y * floor( x / y ); }' ), mod_vec2: new CodeNode( 'fn tsl_mod_vec2( x : vec2f, y : vec2f ) -> vec2f { return x - y * floor( x / y ); }' ), mod_vec3: new CodeNode( 'fn tsl_mod_vec3( x : vec3f, y : vec3f ) -> vec3f { return x - y * floor( x / y ); }' ), mod_vec4: new CodeNode( 'fn tsl_mod_vec4( x : vec4f, y : vec4f ) -> vec4f { return x - y * floor( x / y ); }' ), equals_bool: new CodeNode( 'fn tsl_equals_bool( a : bool, b : bool ) -> bool { return a == b; }' ), equals_bvec2: new CodeNode( 'fn tsl_equals_bvec2( a : vec2f, b : vec2f ) -> vec2<bool> { return vec2<bool>( a.x == b.x, a.y == b.y ); }' ), equals_bvec3: new CodeNode( 'fn tsl_equals_bvec3( a : vec3f, b : vec3f ) -> vec3<bool> { return vec3<bool>( a.x == b.x, a.y == b.y, a.z == b.z ); }' ), equals_bvec4: new CodeNode( 'fn tsl_equals_bvec4( a : vec4f, b : vec4f ) -> vec4<bool> { return vec4<bool>( a.x == b.x, a.y == b.y, a.z == b.z, a.w == b.w ); }' ), repeatWrapping_float: new CodeNode( 'fn tsl_repeatWrapping_float( coord: f32 ) -> f32 { return fract( coord ); }' ), mirrorWrapping_float: new CodeNode( 'fn tsl_mirrorWrapping_float( coord: f32 ) -> f32 { let mirrored = fract( coord * 0.5 ) * 2.0; return 1.0 - abs( 1.0 - mirrored ); }' ), clampWrapping_float: new CodeNode( 'fn tsl_clampWrapping_float( coord: f32 ) -> f32 { return clamp( coord, 0.0, 1.0 ); }' ), biquadraticTexture: new CodeNode( /* wgsl */` fn tsl_biquadraticTexture( map : texture_2d<f32>, coord : vec2f, iRes : vec2u, level : u32 ) -> vec4f { let res = vec2f( iRes ); let uvScaled = coord * res; let uvWrapping = ( ( uvScaled % res ) + res ) % res; // https://www.shadertoy.com/view/WtyXRy let uv = uvWrapping - 0.5; let iuv = floor( uv ); let f = fract( uv ); let rg1 = textureLoad( map, vec2u( iuv + vec2( 0.5, 0.5 ) ) % iRes, level ); let rg2 = textureLoad( map, vec2u( iuv + vec2( 1.5, 0.5 ) ) % iRes, level ); let rg3 = textureLoad( map, vec2u( iuv + vec2( 0.5, 1.5 ) ) % iRes, level ); let rg4 = textureLoad( map, vec2u( iuv + vec2( 1.5, 1.5 ) ) % iRes, level ); return mix( mix( rg1, rg2, f.x ), mix( rg3, rg4, f.x ), f.y ); } ` ) }; const wgslMethods = { dFdx: 'dpdx', dFdy: '- dpdy', mod_float: 'tsl_mod_float', mod_vec2: 'tsl_mod_vec2', mod_vec3: 'tsl_mod_vec3', mod_vec4: 'tsl_mod_vec4', equals_bool: 'tsl_equals_bool', equals_bvec2: 'tsl_equals_bvec2', equals_bvec3: 'tsl_equals_bvec3', equals_bvec4: 'tsl_equals_bvec4', inversesqrt: 'inverseSqrt', bitcast: 'bitcast<f32>' }; // WebGPU issue: does not support pow() with negative base on Windows if ( typeof navigator !== 'undefined' && /Windows/g.test( navigator.userAgent ) ) { wgslPolyfill.pow_float = new CodeNode( 'fn tsl_pow_float( a : f32, b : f32 ) -> f32 { return select( -pow( -a, b ), pow( a, b ), a > 0.0 ); }' ); wgslPolyfill.pow_vec2 = new CodeNode( 'fn tsl_pow_vec2( a : vec2f, b : vec2f ) -> vec2f { return vec2f( tsl_pow_float( a.x, b.x ), tsl_pow_float( a.y, b.y ) ); }', [ wgslPolyfill.pow_float ] ); wgslPolyfill.pow_vec3 = new CodeNode( 'fn tsl_pow_vec3( a : vec3f, b : vec3f ) -> vec3f { return vec3f( tsl_pow_float( a.x, b.x ), tsl_pow_float( a.y, b.y ), tsl_pow_float( a.z, b.z ) ); }', [ wgslPolyfill.pow_float ] ); wgslPolyfill.pow_vec4 = new CodeNode( 'fn tsl_pow_vec4( a : vec4f, b : vec4f ) -> vec4f { return vec4f( tsl_pow_float( a.x, b.x ), tsl_pow_float( a.y, b.y ), tsl_pow_float( a.z, b.z ), tsl_pow_float( a.w, b.w ) ); }', [ wgslPolyfill.pow_float ] ); wgslMethods.pow_float = 'tsl_pow_float'; wgslMethods.pow_vec2 = 'tsl_pow_vec2'; wgslMethods.pow_vec3 = 'tsl_pow_vec3'; wgslMethods.pow_vec4 = 'tsl_pow_vec4'; } // let diagnostics = ''; if ( ( typeof navigator !== 'undefined' && /Firefox|Deno/g.test( navigator.userAgent ) ) !== true ) { diagnostics += 'diagnostic( off, derivative_uniformity );\n'; } /** * A node builder targeting WGSL. * * This module generates WGSL shader code from node materials and also * generates the respective bindings and vertex buffer definitions. These * data are later used by the renderer to create render and compute pipelines * for render objects. * * @augments NodeBuilder */ class WGSLNodeBuilder extends NodeBuilder { /** * Constructs a new WGSL node builder renderer. * * @param {Object3D} object - The 3D object. * @param {Renderer} renderer - The renderer. */ constructor( object, renderer ) { super( object, renderer, new WGSLNodeParser() ); /** * A dictionary that holds for each shader stage ('vertex', 'fragment', 'compute') * another dictionary which manages UBOs per group ('render','frame','object'). * * @type {Object<String,Object<String,NodeUniformsGroup>>} */ this.uniformGroups = {}; /** * A dictionary that holds for each shader stage a Map of builtins. * * @type {Object<String,Map<String,Object>>} */ this.builtins = {}; /** * A dictionary that holds for each shader stage a Set of directives. * * @type {Object<String,Set<String>>} */ this.directives = {}; /** * A map for managing scope arrays. Only relevant for when using * {@link module:WorkgroupInfoNode} in context of compute shaders. * * @type {Map<String,Object>} */ this.scopedArrays = new Map(); } /** * Checks if the given texture requires a manual conversion to the working color space. * * @param {Texture} texture - The texture to check. * @return {Boolean} Whether the given texture requires a conversion to working color space or not. */ needsToWorkingColorSpace( texture ) { return texture.isVideoTexture === true && texture.colorSpace !== NoColorSpace; } /** * Generates the WGSL snippet for sampled textures. * * @private * @param {Texture} texture - The texture. * @param {String} textureProperty - The name of the texture uniform in the shader. * @param {String} uvSnippet - A WGSL snippet that represents texture coordinates used for sampling. * @param {String?} depthSnippet - A WGSL snippet that represents 0-based texture array index to sample. * @param {String} [shaderStage=this.shaderStage] - The shader stage this code snippet is generated for. * @return {String} The WGSL snippet. */ _generateTextureSample( texture, textureProperty, uvSnippet, depthSnippet, shaderStage = this.shaderStage ) { if ( shaderStage === 'fragment' ) { if ( depthSnippet ) { return `textureSample( ${ textureProperty }, ${ textureProperty }_sampler, ${ uvSnippet }, ${ depthSnippet } )`; } else { return `textureSample( ${ textureProperty }, ${ textureProperty }_sampler, ${ uvSnippet } )`; } } else if ( this.isFilteredTexture( texture ) ) { return this.generateFilteredTexture( texture, textureProperty, uvSnippet ); } else { return this.generateTextureLod( texture, textureProperty, uvSnippet, depthSnippet, '0' ); } } /** * Generates the WGSL snippet when sampling video textures. * * @private * @param {String} textureProperty - The name of the video texture uniform in the shader. * @param {String} uvSnippet - A WGSL snippet that represents texture coordinates used for sampling. * @param {String} [shaderStage=this.shaderStage] - The shader stage this code snippet is generated for. * @return {String} The WGSL snippet. */ _generateVideoSample( textureProperty, uvSnippet, shaderStage = this.shaderStage ) { if ( shaderStage === 'fragment' ) { return `textureSampleBaseClampToEdge( ${ textureProperty }, ${ textureProperty }_sampler, vec2<f32>( ${ uvSnippet }.x, 1.0 - ${ uvSnippet }.y ) )`; } else { console.error( `WebGPURenderer: THREE.VideoTexture does not support ${ shaderStage } shader.` ); } } /** * Generates the WGSL snippet when sampling textures with explicit mip level. * * @private * @param {Texture} texture - The texture. * @param {String} textureProperty - The name of the texture uniform in the shader. * @param {String} uvSnippet - A WGSL snippet that represents texture coordinates used for sampling. * @param {String} levelSnippet - A WGSL snippet that represents the mip level, with level 0 containing a full size version of the texture. * @param {String?} depthSnippet - A WGSL snippet that represents 0-based texture array index to sample. * @param {String} [shaderStage=this.shaderStage] - The shader stage this code snippet is generated for. * @return {String} The WGSL snippet. */ _generateTextureSampleLevel( texture, textureProperty, uvSnippet, levelSnippet, depthSnippet, shaderStage = this.shaderStage ) { if ( ( shaderStage === 'fragment' || shaderStage === 'compute' ) && this.isUnfilterable( texture ) === false ) { return `textureSampleLevel( ${ textureProperty }, ${ textureProperty }_sampler, ${ uvSnippet }, ${ levelSnippet } )`; } else if ( this.isFilteredTexture( texture ) ) { return this.generateFilteredTexture( texture, textureProperty, uvSnippet, levelSnippet ); } else { return this.generateTextureLod( texture, textureProperty, uvSnippet, depthSnippet, levelSnippet ); } } /** * Generates a wrap function used in context of textures. * * @param {Texture} texture - The texture to generate the function for. * @return {String} The name of the generated function. */ generateWrapFunction( texture ) { const functionName = `tsl_coord_${ wrapNames[ texture.wrapS ] }S_${ wrapNames[ texture.wrapT ] }_${texture.isData3DTexture ? '3d' : '2d'}T`; let nodeCode = wgslCodeCache[ functionName ]; if ( nodeCode === undefined ) { const includes = []; // For 3D textures, use vec3f; for texture arrays, keep vec2f since array index is separate const coordType = texture.isData3DTexture ? 'vec3f' : 'vec2f'; let code = `fn ${functionName}( coord : ${coordType} ) -> ${coordType} {\n\n\treturn ${coordType}(\n`; const addWrapSnippet = ( wrap, axis ) => { if ( wrap === RepeatWrapping ) { includes.push( wgslPolyfill.repeatWrapping_float ); code += `\t\ttsl_repeatWrapping_float( coord.${ axis } )`; } else if ( wrap === ClampToEdgeWrapping ) { includes.push( wgslPolyfill.clampWrapping_float ); code += `\t\ttsl_clampWrapping_float( coord.${ axis } )`; } else if ( wrap === MirroredRepeatWrapping ) { includes.push( wgslPolyfill.mirrorWrapping_float ); code += `\t\ttsl_mirrorWrapping_float( coord.${ axis } )`; } else { code += `\t\tcoord.${ axis }`; console.warn( `WebGPURenderer: Unsupported texture wrap type "${ wrap }" for vertex shader.` ); } }; addWrapSnippet( texture.wrapS, 'x' ); code += ',\n'; addWrapSnippet( texture.wrapT, 'y' ); if ( texture.isData3DTexture ) { code += ',\n'; addWrapSnippet( texture.wrapR, 'z' ); } code += '\n\t);\n\n}\n'; wgslCodeCache[ functionName ] = nodeCode = new CodeNode( code, includes ); } nodeCode.build( this ); return functionName; } /** * Generates the array declaration string. * * @param {String} type - The type. * @param {Number?} [count] - The count. * @return {String} The generated value as a shader string. */ generateArrayDeclaration( type, count ) { return `array< ${ this.getType( type ) }, ${ count } >`; } /** * Generates a WGSL variable that holds the texture dimension of the given texture. * It also returns information about the the number of layers (elements) of an arrayed * texture as well as the cube face count of cube textures. * * @param {Texture} texture - The texture to generate the function for. * @param {String} textureProperty - The name of the video texture uniform in the shader. * @param {String} levelSnippet - A WGSL snippet that represents the mip level, with level 0 containing a full size version of the texture. * @return {String} The name of the dimension variable. */ generateTextureDimension( texture, textureProperty, levelSnippet ) { const textureData = this.getDataFromNode( texture, this.shaderStage, this.globalCache ); if ( textureData.dimensionsSnippet === undefined ) textureData.dimensionsSnippet = {}; let textureDimensionNode = textureData.dimensionsSnippet[ levelSnippet ]; if ( textureData.dimensionsSnippet[ levelSnippet ] === undefined ) { let textureDimensionsParams; let dimensionType; const { primarySamples } = this.renderer.backend.utils.getTextureSampleData( texture ); const isMultisampled = primarySamples > 1; if ( texture.isData3DTexture ) { dimensionType = 'vec3<u32>'; } else { // Regular 2D textures, depth textures, etc. dimensionType = 'vec2<u32>'; } // Build parameters string based on texture type and multisampling if ( isMultisampled || texture.isVideoTexture || texture.isStorageTexture ) { textureDimensionsParams = textureProperty; } else { textureDimensionsParams = `${textureProperty}${levelSnippet ? `, u32( ${ levelSnippet } )` : ''}`; } textureDimensionNode = new VarNode( new ExpressionNode( `textureDimensions( ${ textureDimensionsParams } )`, dimensionType ) ); textureData.dimensionsSnippet[ levelSnippet ] = textureDimensionNode; if ( texture.isDataArrayTexture || texture.isData3DTexture ) { textureData.arrayLayerCount = new VarNode( new ExpressionNode( `textureNumLayers(${textureProperty})`, 'u32' ) ); } // For cube textures, we know it's always 6 faces if ( texture.isTextureCube ) { textureData.cubeFaceCount = new VarNode( new ExpressionNode( '6u', 'u32' ) ); } } return textureDimensionNode.build( this ); } /** * Generates the WGSL snippet for a manual filtered texture. * * @param {Texture} texture - The texture. * @param {String} textureProperty - The name of the texture uniform in the shader. * @param {String} uvSnippet - A WGSL snippet that represents texture coordinates used for sampling. * @param {String} levelSnippet - A WGSL snippet that represents the mip level, with level 0 containing a full size version of the texture. * @return {String} The WGSL snippet. */ generateFilteredTexture( texture, textureProperty, uvSnippet, levelSnippet = '0u' ) { this._include( 'biquadraticTexture' ); const wrapFunction = this.generateWrapFunction( texture ); const textureDimension = this.generateTextureDimension( texture, textureProperty, levelSnippet ); return `tsl_biquadraticTexture( ${ textureProperty }, ${ wrapFunction }( ${ uvSnippet } ), ${ textureDimension }, u32( ${ levelSnippet } ) )`; } /** * Generates the WGSL snippet for a texture lookup with explicit level-of-detail. * Since it's a lookup, no sampling or filtering is applied. * * @param {Texture} texture - The texture. * @param {String} textureProperty - The name of the texture uniform in the shader. * @param {String} uvSnippet - A WGSL snippet that represents texture coordinates used for sampling. * @param {String?} depthSnippet - A WGSL snippet that represents 0-based texture array index to sample. * @param {String} [levelSnippet='0u'] - A WGSL snippet that represents the mip level, with level 0 containing a full size version of the texture. * @return {String} The WGSL snippet. */ generateTextureLod( texture, textureProperty, uvSnippet, depthSnippet, levelSnippet = '0u' ) { const wrapFunction = this.generateWrapFunction( texture ); const textureDimension = this.generateTextureDimension( texture, textureProperty, levelSnippet ); const vecType = texture.isData3DTexture ? 'vec3' : 'vec2'; const coordSnippet = `${vecType}<u32>(${wrapFunction}(${uvSnippet}) * ${vecType}<f32>(${textureDimension}))`; return this.generateTextureLoad( texture, textureProperty, coordSnippet, depthSnippet, levelSnippet ); } /** * Generates the WGSL snippet that reads a single texel from a texture without sampling or filtering. * * @param {Texture} texture - The texture. * @param {String} textureProperty - The name of the texture uniform in the shader. * @param {String} uvIndexSnippet - A WGSL snippet that represents texture coordinates used for sampling. * @param {String?} depthSnippet - A WGSL snippet that represents 0-based texture array index to sample. * @param {String} [levelSnippet='0u'] - A WGSL snippet that represents the mip level, with level 0 containing a full size version of the texture. * @return {String} The WGSL snippet. */ generateTextureLoad( texture, textureProperty, uvIndexSnippet, depthSnippet, levelSnippet = '0u' ) { if ( texture.isVideoTexture === true || texture.isStorageTexture === true ) { return `textureLoad( ${ textureProperty }, ${ uvIndexSnippet } )`; } else if ( depthSnippet ) { return `textureLoad( ${ textureProperty }, ${ uvIndexSnippet }, ${ depthSnippet }, u32( ${ levelSnippet } ) )`; } else { return `textureLoad( ${ textureProperty }, ${ uvIndexSnippet }, u32( ${ levelSnippet } ) )`; } } /** * Generates the WGSL snippet that writes a single texel to a texture. * * @param {Texture} texture - The texture. * @param {String} textureProperty - The name of the texture uniform in the shader. * @param {String} uvIndexSnippet - A WGSL snippet that represents texture coordinates used for sampling. * @param {String} valueSnippet - A WGSL snippet that represent the new texel value. * @return {String} The WGSL snippet. */ generateTextureStore( texture, textureProperty, uvIndexSnippet, valueSnippet ) { return `textureStore( ${ textureProperty }, ${ uvIndexSnippet }, ${ valueSnippet } )`; } /** * Returns `true` if the sampled values of the given texture should be compared against a reference value. * * @param {Texture} texture - The texture. * @return {Boolean} Whether the sampled values of the given texture should be compared against a reference value or not. */ isSampleCompare( texture ) { return texture.isDepthTexture === true && texture.compareFunction !== null; } /** * Returns `true` if the given texture is unfilterable. * * @param {Texture} texture - The texture. * @return {Boolean} Whether the given texture is unfilterable or not. */ isUnfilterable( texture ) { return this.getComponentTypeFromTexture( texture ) !== 'float' || ( ! this.isAvailable( 'float32Filterable' ) && texture.isDataTexture === true && texture.type === FloatType ) || ( this.isSampleCompare( texture ) === false && texture.minFilter === NearestFilter && texture.magFilter === NearestFilter ) || this.renderer.backend.utils.getTextureSampleData( texture ).primarySamples > 1; } /** * Generates the WGSL snippet for sampling/loading the given texture. * * @param {Texture} texture - The texture. * @param {String} textureProperty - The name of the texture uniform in the shader. * @param {String} uvSnippet - A WGSL snippet that represents texture coordinates used for sampling. * @param {String?} depthSnippet - A WGSL snippet that represents 0-based texture array index to sample. * @param {String} [shaderStage=this.shaderStage] - The shader stage this code snippet is generated for. * @return {String} The WGSL snippet. */ generateTexture( texture, textureProperty, uvSnippet, depthSnippet, shaderStage = this.shaderStage ) { let snippet = null; if ( texture.isVideoTexture === true ) { snippet = this._generateVideoSample( textureProperty, uvSnippet, shaderStage ); } else if ( this.isUnfilterable( texture ) ) { snippet = this.generateTextureLod( texture, textureProperty, uvSnippet, depthSnippet, '0', shaderStage ); } else { snippet = this._generateTextureSample( texture, textureProperty, uvSnippet, depthSnippet, shaderStage ); } return snippet; } /** * Generates the WGSL snippet for sampling/loading the given texture using explicit gradients. * * @param {Texture} texture - The texture. * @param {String} textureProperty - The name of the texture uniform in the shader. * @param {String} uvSnippet - A WGSL snippet that represents texture coordinates used for sampling. * @param {Array<String>} gradSnippet - An array holding both gradient WGSL snippets. * @param {String?} depthSnippet - A WGSL snippet that represents 0-based texture array index to sample. * @param {String} [shaderStage=this.shaderStage] - The shader stage this code snippet is generated for. * @return {String} The WGSL snippet. */ generateTextureGrad( texture, textureProperty, uvSnippet, gradSnippet, depthSnippet, shaderStage = this.shaderStage ) { if ( shaderStage === 'fragment' ) { // TODO handle i32 or u32 --> uvSnippet, array_index: A, ddx, ddy return `textureSampleGrad( ${ textureProperty }, ${ textureProperty }_sampler, ${ uvSnippet }, ${ gradSnippet[ 0 ] }, ${ gradSnippet[ 1 ] } )`; } else { console.error( `WebGPURenderer: THREE.TextureNode.gradient() does not support ${ shaderStage } shader.` ); } } /** * Generates the WGSL snippet for sampling a depth texture and comparing the sampled depth values * against a reference value. * * @param {Texture} texture - The texture. * @param {String} textureProperty - The name of the texture uniform in the shader. * @param {String} uvSnippet - A WGSL snippet that represents texture coordinates used for sampling. * @param {String} compareSnippet - A WGSL snippet that represents the reference value. * @param {String?} depthSnippet - A WGSL snippet that represents 0-based texture array index to sample. * @param {String} [shaderStage=this.shaderStage] - The shader stage this code snippet is generated for. * @return {String} The WGSL snippet. */ generateTextureCompare( texture, textureProperty, uvSnippet, compareSnippet, depthSnippet, shaderStage = this.shaderStage ) { if ( shaderStage === 'fragment' ) { return `textureSampleCompare( ${ textureProperty }, ${ textureProperty }_sampler, ${ uvSnippet }, ${ compareSnippet } )`; } else { console.error( `WebGPURenderer: THREE.DepthTexture.compareFunction() does not support ${ shaderStage } shader.` ); } } /** * Generates the WGSL snippet when sampling textures with explicit mip level. * * @param {Texture} texture - The texture. * @param {String} textureProperty - The name of the texture uniform in the shader. * @param {String} uvSnippet - A WGSL snippet that represents texture coordinates used for sampling. * @param {String} levelSnippet - A WGSL snippet that represents the mip level, with level 0 containing a full size version of the texture. * @param {String?} depthSnippet - A WGSL snippet that represents 0-based texture array index to sample. * @param {String} [shaderStage=this.shaderStage] - The shader stage this code snippet is generated for. * @return {String} The WGSL snippet. */ generateTextureLevel( texture, textureProperty, uvSnippet, levelSnippet, depthSnippet, shaderStage = this.shaderStage ) { let snippet = null; if ( texture.isVideoTexture === true ) { snippet = this._generateVideoSample( textureProperty, uvSnippet, shaderStage ); } else { snippet = this._generateTextureSampleLevel( texture, textureProperty, uvSnippet, levelSnippet, depthSnippet, shaderStage ); } return snippet; } /** * Generates the WGSL snippet when sampling textures with a bias to the mip level. * * @param {Texture} texture - The texture. * @param {String} textureProperty - The name of the texture uniform in the shader. * @param {String} uvSnippet - A WGSL snippet that represents texture coordinates used for sampling. * @param {String} biasSnippet - A WGSL snippet that represents the bias to apply to the mip level before sampling. * @param {String?} depthSnippet - A WGSL snippet that represents 0-based texture array index to sample. * @param {String} [shaderStage=this.shaderStage] - The shader stage this code snippet is generated for. * @return {String} The WGSL snippet. */ generateTextureBias( texture, textureProperty, uvSnippet, biasSnippet, depthSnippet, shaderStage = this.shaderStage ) { if ( shaderStage === 'fragment' ) { return `textureSampleBias( ${ textureProperty }, ${ textureProperty }_sampler, ${ uvSnippet }, ${ biasSnippet } )`; } else { console.error( `WebGPURenderer: THREE.TextureNode.biasNode does not support ${ shaderStage } shader.` ); } } /** * Returns a WGSL snippet that represents the property name of the given node. * * @param {Node} node - The node. * @param {String} [shaderStage=this.shaderStage] - The shader stage this code snippet is generated for. * @return {String} The property name. */ getPropertyName( node, shaderStage = this.shaderStage ) { if ( node.isNodeVarying === true && node.needsInterpolation === true ) { if ( shaderStage === 'vertex' ) { return `varyings.${ node.name }`; } } else if ( node.isNodeUniform === true ) { const name = node.name; const type = node.type; if ( type === 'texture' || type === 'cubeTexture' || type === 'storageTexture' || type === 'texture3D' ) { return name; } else if ( type === 'buffer' || type === 'storageBuffer' || type === 'indirectStorageBuffer' ) { if ( this.isCustomStruct( node ) ) { return name; } return name + '.value'; } else { return node.groupNode.name + '.' + name; } } return super.getPropertyName( node ); } /** * Returns the output struct name. * * @return {String} The name of the output struct. */ getOutputStructName() { return 'output'; } /** * Returns uniforms group count for the given shader stage. * * @private * @param {String} shaderStage - The shader stage. * @return {Number} The uniforms group count for the given shader stage. */ _getUniformGroupCount( shaderStage ) { return Object.keys( this.uniforms[ shaderStage ] ).length; } /** * Returns the native shader operator name for a given generic name. * * @param {String} op - The operator name to resolve. * @return {String} The resolved operator name. */ getFunctionOperator( op ) { const fnOp = wgslFnOpLib[ op ]; if ( fnOp !== undefined ) { this._include( fnOp ); return fnOp; } return null; } /** * Returns the node access for the given node and shader stage. * * @param {StorageTextureNode|StorageBufferNode} node - The storage node. * @param {String} shaderStage - The shader stage. * @return {String} The node access. */ getNodeAccess( node, shaderStage ) { if ( shaderStage !== 'compute' ) return NodeAccess.READ_ONLY; return node.access; } /** * Returns A WGSL snippet representing the storage access. * * @param {StorageTextureNode|StorageBufferNode} node - The storage node. * @param {String} shaderStage - The shader stage. * @return {String} The WGSL snippet representing the storage access. */ getStorageAccess( node, shaderStage ) { return accessNames[ this.getNodeAccess( node, shaderStage ) ]; } /** * This method is one of the more important ones since it's responsible * for generating a matching binding instance for the given uniform node. * * These bindings are later used in the renderer to create bind groups * and layouts. * * @param {UniformNode} node - The uniform node. * @param {String} type - The node data type. * @param {String} shaderStage - The shader stage. * @param {String?} [name=null] - An optional uniform name. * @return {NodeUniform} The node uniform object. */ getUniformFromNode( node, type, shaderStage, name = null ) { const uniformNode = super.getUniformFromNode( node, type, shaderStage, name ); const nodeData = this.getDataFromNode( node, shaderStage, this.globalCache ); if ( nodeData.uniformGPU === undefined ) { let uniformGPU; const group = node.groupNode; const groupName = group.name; const bindings = this.getBindGroupArray( groupName, shaderStage ); if ( type === 'texture' || type === 'cubeTexture' || type === 'storageTexture' || type === 'texture3D' ) { let texture = null; const access = this.getNodeAccess( node, shaderStage ); if ( type === 'texture' || type === 'storageTexture' ) { texture = new NodeSampledTexture( uniformNode.name, uniformNode.node, group, access ); } else if ( type === 'cubeTexture' ) { texture = new NodeSampledCubeTexture( uniformNode.name, uniformNode.node, group, access ); } else if ( type === 'texture3D' ) { texture = new NodeSampledTexture3D( uniformNode.name, uniformNode.node, group, access ); } texture.store = node.isStorageTextureNode === true; texture.setVisibility( gpuShaderStageLib[ shaderStage ] ); if ( ( shaderStage === 'fragment' || shaderStage === 'compute' ) && this.isUnfilterable( node.value ) === false && texture.store === false ) { const sampler = new NodeSampler( `${ uniformNode.name }_sampler`, uniformNode.node, group ); sampler.setVisibility( gpuShaderStageLib[ shaderStage ] ); bindings.push( sampler, texture ); uniformGPU = [ sampler, texture ]; } else { bindings.push( texture ); uniformGPU = [ texture ]; } } else if ( type === 'buffer' || type === 'storageBuffer' || type === 'indirectStorageBuffer' ) { const bufferClass = type === 'buffer' ? NodeUniformBuffer : NodeStorageBuffer; const buffer = new bufferClass( node, group ); buffer.setVisibility( gpuShaderStageLib[ shaderStage ] ); bindings.push( buffer ); uniformGPU = buffer; uniformNode.name = name ? name : 'NodeBuffer_' + uniformNode.id; } else { const uniformsStage = this.uniformGroups[ shaderStage ] || ( this.uniformGroups[ shaderStage ] = {} ); let uniformsGroup = uniformsStage[ groupName ]; if ( uniformsGroup === undefined ) { uniformsGroup = new NodeUniformsGroup( groupName, group ); uniformsGroup.setVisibility( gpuShaderStageLib[ shaderStage ] ); uniformsStage[ groupName ] = uniformsGroup; bindings.push( uniformsGroup ); } uniformGPU = this.getNodeUniform( uniformNode, type ); uniformsGroup.addUniform( uniformGPU ); } nodeData.uniformGPU = uniformGPU; } return uniformNode; } /** * This method should be used whenever builtins are required in nodes. * The internal builtins data structure will make sure builtins are * defined in the WGSL source. * * @param {String} name - The builtin name. * @param {String} property - The property name. * @param {String} type - The node data type. * @param {String} [shaderStage=this.shaderStage] - The shader stage this code snippet is generated for. * @return {String} The property name. */ getBuiltin( name, property, type, shaderStage = this.shaderStage ) { const map = this.builtins[ shaderStage ] || ( this.builtins[ shaderStage ] = new Map() ); if ( map.has( name ) === false ) { map.set( name, { name, property, type } ); } return property; } /** * Returns `true` if the given builtin is defined in the given shader stage. * * @param {String} name - The builtin name. * @param {String} [shaderStage=this.shaderStage] - The shader stage this code snippet is generated for. * @return {String} Whether the given builtin is defined in the given shader stage or not. */ hasBuiltin( name, shaderStage = this.shaderStage ) { return ( this.builtins[ shaderStage ] !== undefined && this.builtins[ shaderStage ].has( name ) ); } /** * Returns the vertex index builtin. * * @return {String} The vertex index. */ getVertexIndex() { if ( this.shaderStage === 'vertex' ) { return this.getBuiltin( 'vertex_index', 'vertexIndex', 'u32', 'attribute' ); } return 'vertexIndex'; } /** * Builds the given shader node. * * @param {ShaderNodeInternal} shaderNode - The shader node. * @return {String} The WGSL function code. */ buildFunctionCode( shaderNode ) { const layout = shaderNode.layout; const flowData = this.flowShaderNode( shaderNode ); const parameters = []; for ( const input of layout.inputs ) { parameters.push( input.name + ' : ' + this.getType( input.type ) ); } // let code = `fn ${ layout.name }( ${ parameters.join( ', ' ) } ) -> ${ this.getType( layout.type ) } { ${ flowData.vars } ${ flowData.code } `; if ( flowData.result ) { code += `\treturn ${ flowData.result };\n`; } code += '\n}\n'; // return code; } /** * Returns the instance index builtin. * * @return {String} The instance index. */ getInstanceIndex() { if ( this.shaderStage === 'vertex' ) { return this.getBuiltin( 'instance_index', 'instanceIndex', 'u32', 'attribute' ); } return 'instanceIndex'; } /** * Returns the invocation local index builtin. * * @return {String} The invocation local index. */ getInvocationLocalIndex() { return this.getBuiltin( 'local_invocation_index', 'invocationLocalIndex', 'u32', 'attribute' ); } /** * Returns the subgroup size builtin. * * @return {String} The subgroup size. */ getSubgroupSize() { this.enableSubGroups(); return this.getBuiltin( 'subgroup_size', 'subgroupSize', 'u32', 'attribute' ); } /** * Returns the invocation subgroup index builtin. * * @return {String} The invocation subgroup index. */ getInvocationSubgroupIndex() { this.enableSubGroups(); return this.getBuiltin( 'subgroup_invocation_id', 'invocationSubgroupIndex', 'u32', 'attribute' ); } /** * Returns the subgroup index builtin. * * @return {String} The subgroup index. */ getSubgroupIndex() { this.enableSubGroups(); return this.getBuiltin( 'subgroup_id', 'subgroupIndex', 'u32', 'attribute' ); } /** * Overwritten as a NOP since this method is intended for the WebGL 2 backend. * * @return {null} Null. */ getDrawIndex() { return null; } /** * Returns the front facing builtin. * * @return {String} The front facing builtin. */ getFrontFacing() { return this.getBuiltin( 'front_facing', 'isFront', 'bool' ); } /** * Returns the frag coord builtin. * * @return {String} The frag coord builtin. */ getFragCoord() { return this.getBuiltin( 'position', 'fragCoord', 'vec4<f32>' ) + '.xy'; } /** * Returns the frag depth builtin. * * @return {String} The frag depth builtin. */ getFragDepth() { return 'output.' + this.getBuiltin( 'frag_depth', 'depth', 'f32', 'output' ); } /** * Returns the clip distances builtin. * * @return {String} The clip distances builtin. */ getClipDistance() { return 'varyings.hw_clip_distances'; } /** * Whether to flip texture data along its vertical axis or not. * * @return {Boolean} Returns always `false` in context of WGSL. */ isFlipY() { return false; } /** * Enables the given directive for the given shader stage. * * @param {String} name - The directive name. * @param {String} [shaderStage=this.shaderStage] - The shader stage to enable the directive for. */ enableDirective( name, shaderStage = this.shaderStage ) { const stage = this.directives[ shaderStage ] || ( this.directives[ shaderStage ] = new Set() ); stage.add( name ); } /** * Returns the directives of the given shader stage as a WGSL string. * * @param {String} shaderStage - The shader stage. * @return {String} A WGSL snippet that enables the directives of the given stage. */ getDirectives( shaderStage ) { const snippets = []; const directives = this.directives[ shaderStage ]; if ( directives !== undefined ) { for ( const directive of directives ) { snippets.push( `enable ${directive};` ); } } return snippets.join( '\n' ); } /** * Enables the 'subgroups' directive. */ enableSubGroups() { this.enableDirective( 'subgroups' ); } /** * Enables the 'subgroups-f16' directive. */ enableSubgroupsF16() { this.enableDirective( 'subgroups-f16' ); } /** * Enables the 'clip_distances' directive. */ enableClipDistances() { this.enableDirective( 'clip_distances' ); } /** * Enables the 'f16' directive. */ enableShaderF16() { this.enableDirective( 'f16' ); } /** * Enables the 'dual_source_blending' directive. */ enableDualSourceBlending() { this.enableDirective( 'dual_source_blending' ); } /** * Enables hardware clipping. * * @param {String} planeCount - The clipping plane count. */ enableHardwareClipping( planeCount ) { this.enableClipDistances(); this.getBuiltin( 'clip_distances', 'hw_clip_distances', `array<f32, ${ planeCount } >`, 'vertex' ); } /** * Returns the builtins of the given shader stage as a WGSL string. * * @param {String} shaderStage - The shader stage. * @return {String} A WGSL snippet that represents the builtins of the given stage. */ getBuiltins( shaderStage ) { const snippets = []; const builtins = this.builtins[ shaderStage ]; if ( builtins !== undefined ) { for ( const { name, property, type } of builtins.values() ) { snippets.push( `@builtin( ${name} ) ${property} : ${type}` ); } } return snippets.join( ',\n\t' ); } /** * This method should be used when a new scoped buffer is used in context of * compute shaders. It adds the array to the internal data structure which is * later used to generate the respective WGSL. * * @param {String} name - The array name. * @param {String} scope - The scope. * @param {String} bufferType - The buffer type. * @param {String} bufferCount - The buffer count. * @return {String} The array name. */ getScopedArray( name, scope, bufferType, bufferCount ) { if ( this.scopedArrays.has( name ) === false ) { this.scopedArrays.set( name, { name, scope, bufferType, bufferCount } ); } return name; } /** * Returns the scoped arrays of the given shader stage as a WGSL string. * * @param {String} shaderStage - The shader stage. * @return {String|undefined} The WGSL snippet that defines the scoped arrays. * Returns `undefined` when used in the vertex or fragment stage. */ getScopedArrays( shaderStage ) { if ( shaderStage !== 'compute' ) { return; } const snippets = []; for ( const { name, scope, bufferType, bufferCount } of this.scopedArrays.values() ) { const type = this.getType( bufferType ); snippets.push( `var<${scope}> ${name}: array< ${type}, ${bufferCount} >;` ); } return snippets.join( '\n' ); } /** * Returns the shader attributes of the given shader stage as a WGSL string. * * @param {String} shaderStage - The shader stage. * @return {String} The WGSL snippet that defines the shader attributes. */ getAttributes( shaderStage ) { const snippets = []; if ( shaderStage === 'compute' ) { this.getBuiltin( 'global_invocation_id', 'globalId', 'vec3<u32>', 'attribute' ); this.getBuiltin( 'workgroup_id', 'workgroupId', 'vec3<u32>', 'attribute' ); this.getBuiltin( 'local_invocation_id', 'localId', 'vec3<u32>', 'attribute' ); this.getBuiltin( 'num_workgroups', 'numWorkgroups', 'vec3<u32>', 'attribute' ); if ( this.renderer.hasFeature( 'subgroups' ) ) { this.enableDirective( 'subgroups', shaderStage ); this.getBuiltin( 'subgroup_size', 'subgroupSize', 'u32', 'attribute' ); } } if ( shaderStage === 'vertex' || shaderStage === 'compute' ) { const builtins = this.getBuiltins( 'attribute' ); if ( builtins ) snippets.push( builtins ); const attributes = this.getAttributesArray(); for ( let index = 0, length = attributes.length; index < length; index ++ ) { const attribute = attributes[ index ]; const name = attribute.name; const type = this.getType( attribute.type ); snippets.push( `@location( ${index} ) ${ name } : ${ type }` ); } } return snippets.join( ',\n\t' ); } /** * Returns the members of the given struct type node as a WGSL string. * * @param {StructTypeNode} struct - The struct type node. * @return {String} The WGSL snippet that defines the struct members. */ getStructMembers( struct ) { const snippets = []; for ( const member of struct.members ) { const prefix = struct.output ? '@location( ' + member.index + ' ) ' : ''; let type = this.getType( member.type ); if ( member.atomic ) { type = 'atomic< ' + type + ' >'; } snippets.push( `\t${ prefix + member.name } : ${ type }` ); } return snippets.join( ',\n' ); } /** * Returns the structs of the given shader stage as a WGSL string. * * @param {String} shaderStage - The shader stage. * @return {String} The WGSL snippet that defines the structs. */ getStructs( shaderStage ) { let result = ''; const structs = this.structs[ shaderStage ]; if ( structs.length > 0 ) { const snippets = []; for ( const struct of structs ) { let snippet = `struct ${ struct.name } {\n`; snippet += this.getStructMembers( struct ); snippet += '\n};'; snippets.push( snippet ); } result = '\n' + snippets.join( '\n\n' ) + '\n'; } return result; } /** * Returns a WGSL string representing a variable. * * @param {String} type - The variable's type. * @param {String} name - The variable's name. * @param {Number?} [count=null] - The array length. * @return {String} The WGSL snippet that defines a variable. */ getVar( type, name, count = null ) { let snippet = `var ${ name } : `; if ( count !== null ) { snippet += this.generateArrayDeclaration( type, count ); } else { snippet += this.getType( type ); } return snippet; } /** * Returns the variables of the given shader stage as a WGSL string. * * @param {String} shaderStage - The shader stage. * @return {String} The WGSL snippet that defines the variables. */ getVars( shaderStage ) { const snippets = []; const vars = this.vars[ shaderStage ]; if ( vars !== undefined ) { for ( const variable of vars ) { snippets.push( `\t${ this.getVar( variable.type, variable.name, variable.count ) };` ); } } return `\n${ snippets.join( '\n' ) }\n`; } /** * Returns the varyings of the given shader stage as a WGSL string. * * @param {String} shaderStage - The shader stage. * @return {String} The WGSL snippet that defines the varyings. */ getVaryings( shaderStage ) { const snippets = []; if ( shaderStage === 'vertex' ) { this.getBuiltin( 'position', 'Vertex', 'vec4<f32>', 'vertex' ); } if ( shaderStage === 'vertex' || shaderStage === 'fragment' ) { const varyings = this.varyings; const vars = this.vars[ shaderStage ]; for ( let index = 0; index < varyings.length; index ++ ) { const varying = varyings[ index ]; if ( varying.needsInterpolation ) { let attributesSnippet = `@location( ${index} )`; if ( /^(int|uint|ivec|uvec)/.test( varying.type ) ) { attributesSnippet += ' @interpolate( flat )'; } snippets.push( `${ attributesSnippet } ${ varying.name } : ${ this.getType( varying.type ) }` ); } else if ( shaderStage === 'vertex' && vars.includes( varying ) === false ) { vars.push( varying ); } } } const builtins = this.getBuiltins( shaderStage ); if ( builtins ) snippets.push( builtins ); const code = snippets.join( ',\n\t' ); return shaderStage === 'vertex' ? this._getWGSLStruct( 'VaryingsStruct', '\t' + code ) : code; } isCustomStruct( nodeUniform ) { return nodeUniform.value.isStorageBufferAttribute && nodeUniform.node.structTypeNode !== null; } /** * Returns the uniforms of the given shader stage as a WGSL string. * * @param {String} shaderStage - The shader stage. * @return {String} The WGSL snippet that defines the uniforms. */ getUniforms( shaderStage ) { const uniforms = this.uniforms[ shaderStage ]; const bindingSnippets = []; const bufferSnippets = []; const structSnippets = []; const uniformGroups = {}; for ( const uniform of uniforms ) { const groupName = uniform.groupNode.name; const uniformIndexes = this.bindingsIndexes[ groupName ]; if ( uniform.type === 'texture' || uniform.type === 'cubeTexture' || uniform.type === 'storageTexture' || uniform.type === 'texture3D' ) { const texture = uniform.node.value; if ( ( shaderStage === 'fragment' || shaderStage === 'compute' ) && this.isUnfilterable( texture ) === false && uniform.node.isStorageTextureNode !== true ) { if ( this.isSampleCompare( texture ) ) { bindingSnippets.push( `@binding( ${ uniformIndexes.binding ++ } ) @group( ${ uniformIndexes.group } ) var ${ uniform.name }_sampler : sampler_comparison;` ); } else { bindingSnippets.push( `@binding( ${ uniformIndexes.binding ++ } ) @group( ${ uniformIndexes.group } ) var ${ uniform.name }_sampler : sampler;` ); } } let textureType; let multisampled = ''; const { primarySamples } = this.renderer.backend.utils.getTextureSampleData( texture ); if ( primarySamples > 1 ) { multisampled = '_multisampled'; } if ( texture.isCubeTexture === true ) { textureType = 'texture_cube<f32>'; } else if ( texture.isDataArrayTexture === true || texture.isCompressedArrayTexture === true ) { textureType = 'texture_2d_array<f32>'; } else if ( texture.isDepthTexture === true ) { textureType = `texture_depth${multisampled}_2d`; } else if ( texture.isVideoTexture === true ) { textureType = 'texture_external'; } else if ( texture.isData3DTexture === true ) { textureType = 'texture_3d<f32>'; } else if ( uniform.node.isStorageTextureNode === true ) { const format = getFormat( texture ); const access = this.getStorageAccess( uniform.node, shaderStage ); textureType = `texture_storage_2d<${ format }, ${ access }>`; } else { const componentPrefix = this.getComponentTypeFromTexture( texture ).charAt( 0 ); textureType = `texture${ multisampled }_2d<${ componentPrefix }32>`; } bindingSnippets.push( `@binding( ${ uniformIndexes.binding ++ } ) @group( ${ uniformIndexes.group } ) var ${ uniform.name } : ${ textureType };` ); } else if ( uniform.type === 'buffer' || uniform.type === 'storageBuffer' || uniform.type === 'indirectStorageBuffer' ) { const bufferNode = uniform.node; const bufferType = this.getType( bufferNode.getNodeType( this ) ); const bufferCount = bufferNode.bufferCount; const bufferCountSnippet = bufferCount > 0 && uniform.type === 'buffer' ? ', ' + bufferCount : ''; const bufferAccessMode = bufferNode.isStorageBufferNode ? `storage, ${ this.getStorageAccess( bufferNode, shaderStage ) }` : 'uniform'; if ( this.isCustomStruct( uniform ) ) { bufferSnippets.push( `@binding( ${ uniformIndexes.binding ++ } ) @group( ${ uniformIndexes.group } ) var<${ bufferAccessMode }> ${ uniform.name } : ${ bufferType };` ); } else { const bufferTypeSnippet = bufferNode.isAtomic ? `atomic<${ bufferType }>` : `${ bufferType }`; const bufferSnippet = `\tvalue : array< ${ bufferTypeSnippet }${ bufferCountSnippet } >`; bufferSnippets.push( this._getWGSLStructBinding( uniform.name, bufferSnippet, bufferAccessMode, uniformIndexes.binding ++, uniformIndexes.group ) ); } } else { const vectorType = this.getType( this.getVectorType( uniform.type ) ); const groupName = uniform.groupNode.name; const group = uniformGroups[ groupName ] || ( uniformGroups[ groupName ] = { index: uniformIndexes.binding ++, id: uniformIndexes.group, snippets: [] } ); group.snippets.push( `\t${ uniform.name } : ${ vectorType }` ); } } for ( const name in uniformGroups ) { const group = uniformGroups[ name ]; structSnippets.push( this._getWGSLStructBinding( name, group.snippets.join( ',\n' ), 'uniform', group.index, group.id ) ); } let code = bindingSnippets.join( '\n' ); code += bufferSnippets.join( '\n' ); code += structSnippets.join( '\n' ); return code; } /** * Controls the code build of the shader stages. */ buildCode() { const shadersData = this.material !== null ? { fragment: {}, vertex: {} } : { compute: {} }; this.sortBindingGroups(); for ( const shaderStage in shadersData ) { this.shaderStage = shaderStage; const stageData = shadersData[ shaderStage ]; stageData.uniforms = this.getUniforms( shaderStage ); stageData.attributes = this.getAttributes( shaderStage ); stageData.varyings = this.getVaryings( shaderStage ); stageData.structs = this.getStructs( shaderStage ); stageData.vars = this.getVars( shaderStage ); stageData.codes = this.getCodes( shaderStage ); stageData.directives = this.getDirectives( shaderStage ); stageData.scopedArrays = this.getScopedArrays( shaderStage ); // let flow = '// code\n\n'; flow += this.flowCode[ shaderStage ]; const flowNodes = this.flowNodes[ shaderStage ]; const mainNode = flowNodes[ flowNodes.length - 1 ]; const outputNode = mainNode.outputNode; const isOutputStruct = ( outputNode !== undefined && outputNode.isOutputStructNode === true ); for ( const node of flowNodes ) { const flowSlotData = this.getFlowData( node/*, shaderStage*/ ); const slotName = node.name; if ( slotName ) { if ( flow.length > 0 ) flow += '\n'; flow += `\t// flow -> ${ slotName }\n`; } flow += `${ flowSlotData.code }\n\t`; if ( node === mainNode && shaderStage !== 'compute' ) { flow += '// result\n\n\t'; if ( shaderStage === 'vertex' ) { flow += `varyings.Vertex = ${ flowSlotData.result };`; } else if ( shaderStage === 'fragment' ) { if ( isOutputStruct ) { stageData.returnType = outputNode.getNodeType( this ); stageData.structs += 'var<private> output : ' + stageData.returnType + ';'; flow += `return ${ flowSlotData.result };`; } else { let structSnippet = '\t@location(0) color: vec4<f32>'; const builtins = this.getBuiltins( 'output' ); if ( builtins ) structSnippet += ',\n\t' + builtins; stageData.returnType = 'OutputStruct'; stageData.structs += this._getWGSLStruct( 'OutputStruct', structSnippet ); stageData.structs += '\nvar<private> output : OutputStruct;'; flow += `output.color = ${ flowSlotData.result };\n\n\treturn output;`; } } } } stageData.flow = flow; } this.shaderStage = null; if ( this.material !== null ) { this.vertexShader = this._getWGSLVertexCode( shadersData.vertex ); this.fragmentShader = this._getWGSLFragmentCode( shadersData.fragment ); } else { this.computeShader = this._getWGSLComputeCode( shadersData.compute, ( this.object.workgroupSize || [ 64 ] ).join( ', ' ) ); } } /** * Returns the native shader method name for a given generic name. * * @param {String} method - The method name to resolve. * @param {String} [output=null] - An optional output. * @return {String} The resolved WGSL method name. */ getMethod( method, output = null ) { let wgslMethod; if ( output !== null ) { wgslMethod = this._getWGSLMethod( method + '_' + output ); } if ( wgslMethod === undefined ) { wgslMethod = this._getWGSLMethod( method ); } return wgslMethod || method; } /** * Returns the WGSL type of the given node data type. * * @param {String} type - The node data type. * @return {String} The WGSL type. */ getType( type ) { return wgslTypeLib[ type ] || type; } /** * Whether the requested feature is available or not. * * @param {String} name - The requested feature. * @return {Boolean} Whether the requested feature is supported or not. */ isAvailable( name ) { let result = supports[ name ]; if ( result === undefined ) { if ( name === 'float32Filterable' ) { result = this.renderer.hasFeature( 'float32-filterable' ); } else if ( name === 'clipDistance' ) { result = this.renderer.hasFeature( 'clip-distances' ); } supports[ name ] = result; } return result; } /** * Returns the native shader method name for a given generic name. * * @private * @param {String} method - The method name to resolve. * @return {String} The resolved WGSL method name. */ _getWGSLMethod( method ) { if ( wgslPolyfill[ method ] !== undefined ) { this._include( method ); } return wgslMethods[ method ]; } /** * Includes the given method name into the current * function node. * * @private * @param {String} name - The method name to include. * @return {CodeNode} The respective code node. */ _include( name ) { const codeNode = wgslPolyfill[ name ]; codeNode.build( this ); if ( this.currentFunctionNode !== null ) { this.currentFunctionNode.includes.push( codeNode ); } return codeNode; } /** * Returns a WGSL vertex shader based on the given shader data. * * @private * @param {Object} shaderData - The shader data. * @return {String} The vertex shader. */ _getWGSLVertexCode( shaderData ) { return `${ this.getSignature() } // directives ${shaderData.directives} // structs ${shaderData.structs} // uniforms ${shaderData.uniforms} // varyings ${shaderData.varyings} var<private> varyings : VaryingsStruct; // codes ${shaderData.codes} @vertex fn main( ${shaderData.attributes} ) -> VaryingsStruct { // vars ${shaderData.vars} // flow ${shaderData.flow} return varyings; } `; } /** * Returns a WGSL fragment shader based on the given shader data. * * @private * @param {Object} shaderData - The shader data. * @return {String} The vertex shader. */ _getWGSLFragmentCode( shaderData ) { return `${ this.getSignature() } // global ${ diagnostics } // structs ${shaderData.structs} // uniforms ${shaderData.uniforms} // codes ${shaderData.codes} @fragment fn main( ${shaderData.varyings} ) -> ${shaderData.returnType} { // vars ${shaderData.vars} // flow ${shaderData.flow} } `; } /** * Returns a WGSL compute shader based on the given shader data. * * @private * @param {Object} shaderData - The shader data. * @param {String} workgroupSize - The workgroup size. * @return {String} The vertex shader. */ _getWGSLComputeCode( shaderData, workgroupSize ) { return `${ this.getSignature() } // directives ${shaderData.directives} // system var<private> instanceIndex : u32; // locals ${shaderData.scopedArrays} // structs ${shaderData.structs} // uniforms ${shaderData.uniforms} // codes ${shaderData.codes} @compute @workgroup_size( ${workgroupSize} ) fn main( ${shaderData.attributes} ) { // system instanceIndex = globalId.x + globalId.y * numWorkgroups.x * u32(${workgroupSize}) + globalId.z * numWorkgroups.x * numWorkgroups.y * u32(${workgroupSize}); // vars ${shaderData.vars} // flow ${shaderData.flow} } `; } /** * Returns a WGSL struct based on the given name and variables. * * @private * @param {String} name - The struct name. * @param {String} vars - The struct variables. * @return {String} The WGSL snippet representing a struct. */ _getWGSLStruct( name, vars ) { return ` struct ${name} { ${vars} };`; } /** * Returns a WGSL struct binding. * * @private * @param {String} name - The struct name. * @param {String} vars - The struct variables. * @param {String} access - The access. * @param {Number} [binding=0] - The binding index. * @param {Number} [group=0] - The group index. * @return {String} The WGSL snippet representing a struct binding. */ _getWGSLStructBinding( name, vars, access, binding = 0, group = 0 ) { const structName = name + 'Struct'; const structSnippet = this._getWGSLStruct( structName, vars ); return `${structSnippet} @binding( ${ binding } ) @group( ${ group } ) var<${access}> ${ name } : ${ structName };`; } } export default WGSLNodeBuilder;