MCP 3D Printer Server
by DMontgomery40
Verified
import NodeMaterial from '../../../materials/nodes/NodeMaterial.js';
import { getDirection, blur } from '../../../nodes/pmrem/PMREMUtils.js';
import { equirectUV } from '../../../nodes/utils/EquirectUVNode.js';
import { uniform } from '../../../nodes/core/UniformNode.js';
import { uniformArray } from '../../../nodes/accessors/UniformArrayNode.js';
import { texture } from '../../../nodes/accessors/TextureNode.js';
import { cubeTexture } from '../../../nodes/accessors/CubeTextureNode.js';
import { float, vec3 } from '../../../nodes/tsl/TSLBase.js';
import { uv } from '../../../nodes/accessors/UV.js';
import { attribute } from '../../../nodes/core/AttributeNode.js';
import { OrthographicCamera } from '../../../cameras/OrthographicCamera.js';
import { Color } from '../../../math/Color.js';
import { Vector3 } from '../../../math/Vector3.js';
import { BufferGeometry } from '../../../core/BufferGeometry.js';
import { BufferAttribute } from '../../../core/BufferAttribute.js';
import { RenderTarget } from '../../../core/RenderTarget.js';
import { Mesh } from '../../../objects/Mesh.js';
import { PerspectiveCamera } from '../../../cameras/PerspectiveCamera.js';
import { MeshBasicMaterial } from '../../../materials/MeshBasicMaterial.js';
import { BoxGeometry } from '../../../geometries/BoxGeometry.js';
import {
CubeReflectionMapping,
CubeRefractionMapping,
CubeUVReflectionMapping,
LinearFilter,
NoBlending,
RGBAFormat,
HalfFloatType,
BackSide,
LinearSRGBColorSpace
} from '../../../constants.js';
const LOD_MIN = 4;
// The standard deviations (radians) associated with the extra mips. These are
// chosen to approximate a Trowbridge-Reitz distribution function times the
// geometric shadowing function. These sigma values squared must match the
// variance #defines in cube_uv_reflection_fragment.glsl.js.
const EXTRA_LOD_SIGMA = [ 0.125, 0.215, 0.35, 0.446, 0.526, 0.582 ];
// The maximum length of the blur for loop. Smaller sigmas will use fewer
// samples and exit early, but not recompile the shader.
const MAX_SAMPLES = 20;
const _flatCamera = /*@__PURE__*/ new OrthographicCamera( - 1, 1, 1, - 1, 0, 1 );
const _cubeCamera = /*@__PURE__*/ new PerspectiveCamera( 90, 1 );
const _clearColor = /*@__PURE__*/ new Color();
let _oldTarget = null;
let _oldActiveCubeFace = 0;
let _oldActiveMipmapLevel = 0;
// Golden Ratio
const PHI = ( 1 + Math.sqrt( 5 ) ) / 2;
const INV_PHI = 1 / PHI;
// Vertices of a dodecahedron (except the opposites, which represent the
// same axis), used as axis directions evenly spread on a sphere.
const _axisDirections = [
/*@__PURE__*/ new Vector3( - PHI, INV_PHI, 0 ),
/*@__PURE__*/ new Vector3( PHI, INV_PHI, 0 ),
/*@__PURE__*/ new Vector3( - INV_PHI, 0, PHI ),
/*@__PURE__*/ new Vector3( INV_PHI, 0, PHI ),
/*@__PURE__*/ new Vector3( 0, PHI, - INV_PHI ),
/*@__PURE__*/ new Vector3( 0, PHI, INV_PHI ),
/*@__PURE__*/ new Vector3( - 1, 1, - 1 ),
/*@__PURE__*/ new Vector3( 1, 1, - 1 ),
/*@__PURE__*/ new Vector3( - 1, 1, 1 ),
/*@__PURE__*/ new Vector3( 1, 1, 1 )
];
// maps blur materials to their uniforms dictionary
const _uniformsMap = new WeakMap();
// WebGPU Face indices
const _faceLib = [
3, 1, 5,
0, 4, 2
];
const _direction = /*@__PURE__*/ getDirection( uv(), attribute( 'faceIndex' ) ).normalize();
const _outputDirection = /*@__PURE__*/ vec3( _direction.x, _direction.y, _direction.z );
/**
* This class generates a Prefiltered, Mipmapped Radiance Environment Map
* (PMREM) from a cubeMap environment texture. This allows different levels of
* blur to be quickly accessed based on material roughness. It is packed into a
* special CubeUV format that allows us to perform custom interpolation so that
* we can support nonlinear formats such as RGBE. Unlike a traditional mipmap
* chain, it only goes down to the LOD_MIN level (above), and then creates extra
* even more filtered 'mips' at the same LOD_MIN resolution, associated with
* higher roughness levels. In this way we maintain resolution to smoothly
* interpolate diffuse lighting while limiting sampling computation.
*
* Paper: Fast, Accurate Image-Based Lighting
* https://drive.google.com/file/d/15y8r_UpKlU9SvV4ILb0C3qCPecS8pvLz/view
*/
class PMREMGenerator {
constructor( renderer ) {
this._renderer = renderer;
this._pingPongRenderTarget = null;
this._lodMax = 0;
this._cubeSize = 0;
this._lodPlanes = [];
this._sizeLods = [];
this._sigmas = [];
this._lodMeshes = [];
this._blurMaterial = null;
this._cubemapMaterial = null;
this._equirectMaterial = null;
this._backgroundBox = null;
}
get _hasInitialized() {
return this._renderer.hasInitialized();
}
/**
* Generates a PMREM from a supplied Scene, which can be faster than using an
* image if networking bandwidth is low. Optional sigma specifies a blur radius
* in radians to be applied to the scene before PMREM generation. Optional near
* and far planes ensure the scene is rendered in its entirety (the cubeCamera
* is placed at the origin).
*
* @param {Scene} scene - The scene to be captured.
* @param {Number} [sigma=0] - The blur radius in radians.
* @param {Number} [near=0.1] - The near plane distance.
* @param {Number} [far=100] - The far plane distance.
* @param {RenderTarget?} [renderTarget=null] - The render target to use.
* @return {RenderTarget} The resulting PMREM.
* @see fromSceneAsync
*/
fromScene( scene, sigma = 0, near = 0.1, far = 100, renderTarget = null ) {
this._setSize( 256 );
if ( this._hasInitialized === false ) {
console.warn( 'THREE.PMREMGenerator: .fromScene() called before the backend is initialized. Try using .fromSceneAsync() instead.' );
const cubeUVRenderTarget = renderTarget || this._allocateTargets();
this.fromSceneAsync( scene, sigma, near, far, cubeUVRenderTarget );
return cubeUVRenderTarget;
}
_oldTarget = this._renderer.getRenderTarget();
_oldActiveCubeFace = this._renderer.getActiveCubeFace();
_oldActiveMipmapLevel = this._renderer.getActiveMipmapLevel();
const cubeUVRenderTarget = renderTarget || this._allocateTargets();
cubeUVRenderTarget.depthBuffer = true;
this._sceneToCubeUV( scene, near, far, cubeUVRenderTarget );
if ( sigma > 0 ) {
this._blur( cubeUVRenderTarget, 0, 0, sigma );
}
this._applyPMREM( cubeUVRenderTarget );
this._cleanup( cubeUVRenderTarget );
return cubeUVRenderTarget;
}
/**
* Generates a PMREM from a supplied Scene, which can be faster than using an
* image if networking bandwidth is low. Optional sigma specifies a blur radius
* in radians to be applied to the scene before PMREM generation. Optional near
* and far planes ensure the scene is rendered in its entirety (the cubeCamera
* is placed at the origin).
*
* @param {Scene} scene - The scene to be captured.
* @param {Number} [sigma=0] - The blur radius in radians.
* @param {Number} [near=0.1] - The near plane distance.
* @param {Number} [far=100] - The far plane distance.
* @param {RenderTarget?} [renderTarget=null] - The render target to use.
* @return {Promise<RenderTarget>} The resulting PMREM.
* @see fromScene
*/
async fromSceneAsync( scene, sigma = 0, near = 0.1, far = 100, renderTarget = null ) {
if ( this._hasInitialized === false ) await this._renderer.init();
return this.fromScene( scene, sigma, near, far, renderTarget );
}
/**
* Generates a PMREM from an equirectangular texture, which can be either LDR
* or HDR. The ideal input image size is 1k (1024 x 512),
* as this matches best with the 256 x 256 cubemap output.
*
* @param {Texture} equirectangular - The equirectangular texture to be converted.
* @param {RenderTarget?} [renderTarget=null] - The render target to use.
* @return {RenderTarget} The resulting PMREM.
* @see fromEquirectangularAsync
*/
fromEquirectangular( equirectangular, renderTarget = null ) {
if ( this._hasInitialized === false ) {
console.warn( 'THREE.PMREMGenerator: .fromEquirectangular() called before the backend is initialized. Try using .fromEquirectangularAsync() instead.' );
this._setSizeFromTexture( equirectangular );
const cubeUVRenderTarget = renderTarget || this._allocateTargets();
this.fromEquirectangularAsync( equirectangular, cubeUVRenderTarget );
return cubeUVRenderTarget;
}
return this._fromTexture( equirectangular, renderTarget );
}
/**
* Generates a PMREM from an equirectangular texture, which can be either LDR
* or HDR. The ideal input image size is 1k (1024 x 512),
* as this matches best with the 256 x 256 cubemap output.
*
* @param {Texture} equirectangular - The equirectangular texture to be converted.
* @param {RenderTarget?} [renderTarget=null] - The render target to use.
* @return {Promise<RenderTarget>} The resulting PMREM.
* @see fromEquirectangular
*/
async fromEquirectangularAsync( equirectangular, renderTarget = null ) {
if ( this._hasInitialized === false ) await this._renderer.init();
return this._fromTexture( equirectangular, renderTarget );
}
/**
* Generates a PMREM from an cubemap texture, which can be either LDR
* or HDR. The ideal input cube size is 256 x 256,
* as this matches best with the 256 x 256 cubemap output.
*
* @param {Texture} cubemap - The cubemap texture to be converted.
* @param {RenderTarget?} [renderTarget=null] - The render target to use.
* @return {RenderTarget} The resulting PMREM.
* @see fromCubemapAsync
*/
fromCubemap( cubemap, renderTarget = null ) {
if ( this._hasInitialized === false ) {
console.warn( 'THREE.PMREMGenerator: .fromCubemap() called before the backend is initialized. Try using .fromCubemapAsync() instead.' );
this._setSizeFromTexture( cubemap );
const cubeUVRenderTarget = renderTarget || this._allocateTargets();
this.fromCubemapAsync( cubemap, renderTarget );
return cubeUVRenderTarget;
}
return this._fromTexture( cubemap, renderTarget );
}
/**
* Generates a PMREM from an cubemap texture, which can be either LDR
* or HDR. The ideal input cube size is 256 x 256,
* with the 256 x 256 cubemap output.
*
* @param {Texture} cubemap - The cubemap texture to be converted.
* @param {RenderTarget?} [renderTarget=null] - The render target to use.
* @return {Promise<RenderTarget>} The resulting PMREM.
* @see fromCubemap
*/
async fromCubemapAsync( cubemap, renderTarget = null ) {
if ( this._hasInitialized === false ) await this._renderer.init();
return this._fromTexture( cubemap, renderTarget );
}
/**
* Pre-compiles the cubemap shader. You can get faster start-up by invoking this method during
* your texture's network fetch for increased concurrency.
*
* @returns {Promise}
*/
async compileCubemapShader() {
if ( this._cubemapMaterial === null ) {
this._cubemapMaterial = _getCubemapMaterial();
await this._compileMaterial( this._cubemapMaterial );
}
}
/**
* Pre-compiles the equirectangular shader. You can get faster start-up by invoking this method during
* your texture's network fetch for increased concurrency.
*
* @returns {Promise}
*/
async compileEquirectangularShader() {
if ( this._equirectMaterial === null ) {
this._equirectMaterial = _getEquirectMaterial();
await this._compileMaterial( this._equirectMaterial );
}
}
/**
* Disposes of the PMREMGenerator's internal memory. Note that PMREMGenerator is a static class,
* so you should not need more than one PMREMGenerator object. If you do, calling dispose() on
* one of them will cause any others to also become unusable.
*/
dispose() {
this._dispose();
if ( this._cubemapMaterial !== null ) this._cubemapMaterial.dispose();
if ( this._equirectMaterial !== null ) this._equirectMaterial.dispose();
if ( this._backgroundBox !== null ) {
this._backgroundBox.geometry.dispose();
this._backgroundBox.material.dispose();
}
}
// private interface
_setSizeFromTexture( texture ) {
if ( texture.mapping === CubeReflectionMapping || texture.mapping === CubeRefractionMapping ) {
this._setSize( texture.image.length === 0 ? 16 : ( texture.image[ 0 ].width || texture.image[ 0 ].image.width ) );
} else { // Equirectangular
this._setSize( texture.image.width / 4 );
}
}
_setSize( cubeSize ) {
this._lodMax = Math.floor( Math.log2( cubeSize ) );
this._cubeSize = Math.pow( 2, this._lodMax );
}
_dispose() {
if ( this._blurMaterial !== null ) this._blurMaterial.dispose();
if ( this._pingPongRenderTarget !== null ) this._pingPongRenderTarget.dispose();
for ( let i = 0; i < this._lodPlanes.length; i ++ ) {
this._lodPlanes[ i ].dispose();
}
}
_cleanup( outputTarget ) {
this._renderer.setRenderTarget( _oldTarget, _oldActiveCubeFace, _oldActiveMipmapLevel );
outputTarget.scissorTest = false;
_setViewport( outputTarget, 0, 0, outputTarget.width, outputTarget.height );
}
_fromTexture( texture, renderTarget ) {
this._setSizeFromTexture( texture );
_oldTarget = this._renderer.getRenderTarget();
_oldActiveCubeFace = this._renderer.getActiveCubeFace();
_oldActiveMipmapLevel = this._renderer.getActiveMipmapLevel();
const cubeUVRenderTarget = renderTarget || this._allocateTargets();
this._textureToCubeUV( texture, cubeUVRenderTarget );
this._applyPMREM( cubeUVRenderTarget );
this._cleanup( cubeUVRenderTarget );
return cubeUVRenderTarget;
}
_allocateTargets() {
const width = 3 * Math.max( this._cubeSize, 16 * 7 );
const height = 4 * this._cubeSize;
const params = {
magFilter: LinearFilter,
minFilter: LinearFilter,
generateMipmaps: false,
type: HalfFloatType,
format: RGBAFormat,
colorSpace: LinearSRGBColorSpace,
//depthBuffer: false
};
const cubeUVRenderTarget = _createRenderTarget( width, height, params );
if ( this._pingPongRenderTarget === null || this._pingPongRenderTarget.width !== width || this._pingPongRenderTarget.height !== height ) {
if ( this._pingPongRenderTarget !== null ) {
this._dispose();
}
this._pingPongRenderTarget = _createRenderTarget( width, height, params );
const { _lodMax } = this;
( { sizeLods: this._sizeLods, lodPlanes: this._lodPlanes, sigmas: this._sigmas, lodMeshes: this._lodMeshes } = _createPlanes( _lodMax ) );
this._blurMaterial = _getBlurShader( _lodMax, width, height );
}
return cubeUVRenderTarget;
}
async _compileMaterial( material ) {
const tmpMesh = new Mesh( this._lodPlanes[ 0 ], material );
await this._renderer.compile( tmpMesh, _flatCamera );
}
_sceneToCubeUV( scene, near, far, cubeUVRenderTarget ) {
const cubeCamera = _cubeCamera;
cubeCamera.near = near;
cubeCamera.far = far;
// px, py, pz, nx, ny, nz
const upSign = [ 1, 1, 1, 1, - 1, 1 ];
const forwardSign = [ 1, - 1, 1, - 1, 1, - 1 ];
const renderer = this._renderer;
const originalAutoClear = renderer.autoClear;
renderer.getClearColor( _clearColor );
renderer.autoClear = false;
let backgroundBox = this._backgroundBox;
if ( backgroundBox === null ) {
const backgroundMaterial = new MeshBasicMaterial( {
name: 'PMREM.Background',
side: BackSide,
depthWrite: false,
depthTest: false
} );
backgroundBox = new Mesh( new BoxGeometry(), backgroundMaterial );
}
let useSolidColor = false;
const background = scene.background;
if ( background ) {
if ( background.isColor ) {
backgroundBox.material.color.copy( background );
scene.background = null;
useSolidColor = true;
}
} else {
backgroundBox.material.color.copy( _clearColor );
useSolidColor = true;
}
renderer.setRenderTarget( cubeUVRenderTarget );
renderer.clear();
if ( useSolidColor ) {
renderer.render( backgroundBox, cubeCamera );
}
for ( let i = 0; i < 6; i ++ ) {
const col = i % 3;
if ( col === 0 ) {
cubeCamera.up.set( 0, upSign[ i ], 0 );
cubeCamera.lookAt( forwardSign[ i ], 0, 0 );
} else if ( col === 1 ) {
cubeCamera.up.set( 0, 0, upSign[ i ] );
cubeCamera.lookAt( 0, forwardSign[ i ], 0 );
} else {
cubeCamera.up.set( 0, upSign[ i ], 0 );
cubeCamera.lookAt( 0, 0, forwardSign[ i ] );
}
const size = this._cubeSize;
_setViewport( cubeUVRenderTarget, col * size, i > 2 ? size : 0, size, size );
renderer.render( scene, cubeCamera );
}
renderer.autoClear = originalAutoClear;
scene.background = background;
}
_textureToCubeUV( texture, cubeUVRenderTarget ) {
const renderer = this._renderer;
const isCubeTexture = ( texture.mapping === CubeReflectionMapping || texture.mapping === CubeRefractionMapping );
if ( isCubeTexture ) {
if ( this._cubemapMaterial === null ) {
this._cubemapMaterial = _getCubemapMaterial( texture );
}
} else {
if ( this._equirectMaterial === null ) {
this._equirectMaterial = _getEquirectMaterial( texture );
}
}
const material = isCubeTexture ? this._cubemapMaterial : this._equirectMaterial;
material.fragmentNode.value = texture;
const mesh = this._lodMeshes[ 0 ];
mesh.material = material;
const size = this._cubeSize;
_setViewport( cubeUVRenderTarget, 0, 0, 3 * size, 2 * size );
renderer.setRenderTarget( cubeUVRenderTarget );
renderer.render( mesh, _flatCamera );
}
_applyPMREM( cubeUVRenderTarget ) {
const renderer = this._renderer;
const autoClear = renderer.autoClear;
renderer.autoClear = false;
const n = this._lodPlanes.length;
for ( let i = 1; i < n; i ++ ) {
const sigma = Math.sqrt( this._sigmas[ i ] * this._sigmas[ i ] - this._sigmas[ i - 1 ] * this._sigmas[ i - 1 ] );
const poleAxis = _axisDirections[ ( n - i - 1 ) % _axisDirections.length ];
this._blur( cubeUVRenderTarget, i - 1, i, sigma, poleAxis );
}
renderer.autoClear = autoClear;
}
/**
* This is a two-pass Gaussian blur for a cubemap. Normally this is done
* vertically and horizontally, but this breaks down on a cube. Here we apply
* the blur latitudinally (around the poles), and then longitudinally (towards
* the poles) to approximate the orthogonally-separable blur. It is least
* accurate at the poles, but still does a decent job.
*
* @param {RenderTarget} cubeUVRenderTarget - The cubemap render target.
* @param {Number} lodIn - The input level-of-detail.
* @param {Number} lodOut - The output level-of-detail.
* @param {Number} sigma - The blur radius in radians.
* @param {Vector3} [poleAxis] - The pole axis.
*/
_blur( cubeUVRenderTarget, lodIn, lodOut, sigma, poleAxis ) {
const pingPongRenderTarget = this._pingPongRenderTarget;
this._halfBlur(
cubeUVRenderTarget,
pingPongRenderTarget,
lodIn,
lodOut,
sigma,
'latitudinal',
poleAxis );
this._halfBlur(
pingPongRenderTarget,
cubeUVRenderTarget,
lodOut,
lodOut,
sigma,
'longitudinal',
poleAxis );
}
_halfBlur( targetIn, targetOut, lodIn, lodOut, sigmaRadians, direction, poleAxis ) {
const renderer = this._renderer;
const blurMaterial = this._blurMaterial;
if ( direction !== 'latitudinal' && direction !== 'longitudinal' ) {
console.error( 'blur direction must be either latitudinal or longitudinal!' );
}
// Number of standard deviations at which to cut off the discrete approximation.
const STANDARD_DEVIATIONS = 3;
const blurMesh = this._lodMeshes[ lodOut ];
blurMesh.material = blurMaterial;
const blurUniforms = _uniformsMap.get( blurMaterial );
const pixels = this._sizeLods[ lodIn ] - 1;
const radiansPerPixel = isFinite( sigmaRadians ) ? Math.PI / ( 2 * pixels ) : 2 * Math.PI / ( 2 * MAX_SAMPLES - 1 );
const sigmaPixels = sigmaRadians / radiansPerPixel;
const samples = isFinite( sigmaRadians ) ? 1 + Math.floor( STANDARD_DEVIATIONS * sigmaPixels ) : MAX_SAMPLES;
if ( samples > MAX_SAMPLES ) {
console.warn( `sigmaRadians, ${
sigmaRadians}, is too large and will clip, as it requested ${
samples} samples when the maximum is set to ${MAX_SAMPLES}` );
}
const weights = [];
let sum = 0;
for ( let i = 0; i < MAX_SAMPLES; ++ i ) {
const x = i / sigmaPixels;
const weight = Math.exp( - x * x / 2 );
weights.push( weight );
if ( i === 0 ) {
sum += weight;
} else if ( i < samples ) {
sum += 2 * weight;
}
}
for ( let i = 0; i < weights.length; i ++ ) {
weights[ i ] = weights[ i ] / sum;
}
targetIn.texture.frame = ( targetIn.texture.frame || 0 ) + 1;
blurUniforms.envMap.value = targetIn.texture;
blurUniforms.samples.value = samples;
blurUniforms.weights.array = weights;
blurUniforms.latitudinal.value = direction === 'latitudinal' ? 1 : 0;
if ( poleAxis ) {
blurUniforms.poleAxis.value = poleAxis;
}
const { _lodMax } = this;
blurUniforms.dTheta.value = radiansPerPixel;
blurUniforms.mipInt.value = _lodMax - lodIn;
const outputSize = this._sizeLods[ lodOut ];
const x = 3 * outputSize * ( lodOut > _lodMax - LOD_MIN ? lodOut - _lodMax + LOD_MIN : 0 );
const y = 4 * ( this._cubeSize - outputSize );
_setViewport( targetOut, x, y, 3 * outputSize, 2 * outputSize );
renderer.setRenderTarget( targetOut );
renderer.render( blurMesh, _flatCamera );
}
}
function _createPlanes( lodMax ) {
const lodPlanes = [];
const sizeLods = [];
const sigmas = [];
const lodMeshes = [];
let lod = lodMax;
const totalLods = lodMax - LOD_MIN + 1 + EXTRA_LOD_SIGMA.length;
for ( let i = 0; i < totalLods; i ++ ) {
const sizeLod = Math.pow( 2, lod );
sizeLods.push( sizeLod );
let sigma = 1.0 / sizeLod;
if ( i > lodMax - LOD_MIN ) {
sigma = EXTRA_LOD_SIGMA[ i - lodMax + LOD_MIN - 1 ];
} else if ( i === 0 ) {
sigma = 0;
}
sigmas.push( sigma );
const texelSize = 1.0 / ( sizeLod - 2 );
const min = - texelSize;
const max = 1 + texelSize;
const uv1 = [ min, min, max, min, max, max, min, min, max, max, min, max ];
const cubeFaces = 6;
const vertices = 6;
const positionSize = 3;
const uvSize = 2;
const faceIndexSize = 1;
const position = new Float32Array( positionSize * vertices * cubeFaces );
const uv = new Float32Array( uvSize * vertices * cubeFaces );
const faceIndex = new Float32Array( faceIndexSize * vertices * cubeFaces );
for ( let face = 0; face < cubeFaces; face ++ ) {
const x = ( face % 3 ) * 2 / 3 - 1;
const y = face > 2 ? 0 : - 1;
const coordinates = [
x, y, 0,
x + 2 / 3, y, 0,
x + 2 / 3, y + 1, 0,
x, y, 0,
x + 2 / 3, y + 1, 0,
x, y + 1, 0
];
const faceIdx = _faceLib[ face ];
position.set( coordinates, positionSize * vertices * faceIdx );
uv.set( uv1, uvSize * vertices * faceIdx );
const fill = [ faceIdx, faceIdx, faceIdx, faceIdx, faceIdx, faceIdx ];
faceIndex.set( fill, faceIndexSize * vertices * faceIdx );
}
const planes = new BufferGeometry();
planes.setAttribute( 'position', new BufferAttribute( position, positionSize ) );
planes.setAttribute( 'uv', new BufferAttribute( uv, uvSize ) );
planes.setAttribute( 'faceIndex', new BufferAttribute( faceIndex, faceIndexSize ) );
lodPlanes.push( planes );
lodMeshes.push( new Mesh( planes, null ) );
if ( lod > LOD_MIN ) {
lod --;
}
}
return { lodPlanes, sizeLods, sigmas, lodMeshes };
}
function _createRenderTarget( width, height, params ) {
const cubeUVRenderTarget = new RenderTarget( width, height, params );
cubeUVRenderTarget.texture.mapping = CubeUVReflectionMapping;
cubeUVRenderTarget.texture.name = 'PMREM.cubeUv';
cubeUVRenderTarget.texture.isPMREMTexture = true;
cubeUVRenderTarget.scissorTest = true;
return cubeUVRenderTarget;
}
function _setViewport( target, x, y, width, height ) {
target.viewport.set( x, y, width, height );
target.scissor.set( x, y, width, height );
}
function _getMaterial( type ) {
const material = new NodeMaterial();
material.depthTest = false;
material.depthWrite = false;
material.blending = NoBlending;
material.name = `PMREM_${ type }`;
return material;
}
function _getBlurShader( lodMax, width, height ) {
const weights = uniformArray( new Array( MAX_SAMPLES ).fill( 0 ) );
const poleAxis = uniform( new Vector3( 0, 1, 0 ) );
const dTheta = uniform( 0 );
const n = float( MAX_SAMPLES );
const latitudinal = uniform( 0 ); // false, bool
const samples = uniform( 1 ); // int
const envMap = texture( null );
const mipInt = uniform( 0 ); // int
const CUBEUV_TEXEL_WIDTH = float( 1 / width );
const CUBEUV_TEXEL_HEIGHT = float( 1 / height );
const CUBEUV_MAX_MIP = float( lodMax );
const materialUniforms = {
n,
latitudinal,
weights,
poleAxis,
outputDirection: _outputDirection,
dTheta,
samples,
envMap,
mipInt,
CUBEUV_TEXEL_WIDTH,
CUBEUV_TEXEL_HEIGHT,
CUBEUV_MAX_MIP
};
const material = _getMaterial( 'blur' );
material.fragmentNode = blur( { ...materialUniforms, latitudinal: latitudinal.equal( 1 ) } );
_uniformsMap.set( material, materialUniforms );
return material;
}
function _getCubemapMaterial( envTexture ) {
const material = _getMaterial( 'cubemap' );
material.fragmentNode = cubeTexture( envTexture, _outputDirection );
return material;
}
function _getEquirectMaterial( envTexture ) {
const material = _getMaterial( 'equirect' );
material.fragmentNode = texture( envTexture, equirectUV( _outputDirection ), 0 );
return material;
}
export default PMREMGenerator;