MCP 3D Printer Server
by DMontgomery40
Verified
import Animation from './Animation.js';
import RenderObjects from './RenderObjects.js';
import Attributes from './Attributes.js';
import Geometries from './Geometries.js';
import Info from './Info.js';
import Pipelines from './Pipelines.js';
import Bindings from './Bindings.js';
import RenderLists from './RenderLists.js';
import RenderContexts from './RenderContexts.js';
import Textures from './Textures.js';
import Background from './Background.js';
import Nodes from './nodes/Nodes.js';
import Color4 from './Color4.js';
import ClippingContext from './ClippingContext.js';
import QuadMesh from './QuadMesh.js';
import RenderBundles from './RenderBundles.js';
import NodeLibrary from './nodes/NodeLibrary.js';
import Lighting from './Lighting.js';
import XRManager from './XRManager.js';
import NodeMaterial from '../../materials/nodes/NodeMaterial.js';
import { Scene } from '../../scenes/Scene.js';
import { Frustum } from '../../math/Frustum.js';
import { Matrix4 } from '../../math/Matrix4.js';
import { Vector2 } from '../../math/Vector2.js';
import { Vector4 } from '../../math/Vector4.js';
import { RenderTarget } from '../../core/RenderTarget.js';
import { DoubleSide, BackSide, FrontSide, SRGBColorSpace, NoToneMapping, LinearFilter, LinearSRGBColorSpace, HalfFloatType, RGBAFormat, PCFShadowMap } from '../../constants.js';
/** @module Renderer **/
const _scene = /*@__PURE__*/ new Scene();
const _drawingBufferSize = /*@__PURE__*/ new Vector2();
const _screen = /*@__PURE__*/ new Vector4();
const _frustum = /*@__PURE__*/ new Frustum();
const _projScreenMatrix = /*@__PURE__*/ new Matrix4();
const _vector4 = /*@__PURE__*/ new Vector4();
/**
* Base class for renderers.
*/
class Renderer {
/**
* Constructs a new renderer.
*
* @param {Backend} backend - The backend the renderer is targeting (e.g. WebGPU or WebGL 2).
* @param {Object} parameters - The configuration parameter.
* @param {Boolean} [parameters.logarithmicDepthBuffer=false] - Whether logarithmic depth buffer is enabled or not.
* @param {Boolean} [parameters.alpha=true] - Whether the default framebuffer (which represents the final contents of the canvas) should be transparent or opaque.
* @param {Boolean} [parameters.depth=true] - Whether the default framebuffer should have a depth buffer or not.
* @param {Boolean} [parameters.stencil=false] - Whether the default framebuffer should have a stencil buffer or not.
* @param {Boolean} [parameters.antialias=false] - Whether MSAA as the default anti-aliasing should be enabled or not.
* @param {Number} [parameters.samples=0] - When `antialias` is `true`, `4` samples are used by default. This parameter can set to any other integer value than 0
* to overwrite the default.
* @param {Function?} [parameters.getFallback=null] - This callback function can be used to provide a fallback backend, if the primary backend can't be targeted.
* @param {Number} [parameters.colorBufferType=HalfFloatType] - Defines the type of color buffers. The default `HalfFloatType` is recommend for best
* quality. To save memory and bandwidth, `UnsignedByteType` might be used. This will reduce rendering quality though.
*/
constructor( backend, parameters = {} ) {
/**
* This flag can be used for type testing.
*
* @type {Boolean}
* @readonly
* @default true
*/
this.isRenderer = true;
//
const {
logarithmicDepthBuffer = false,
alpha = true,
depth = true,
stencil = false,
antialias = false,
samples = 0,
getFallback = null,
colorBufferType = HalfFloatType
} = parameters;
/**
* A reference to the canvas element the renderer is drawing to.
* This value of this property will automatically be created by
* the renderer.
*
* @type {HTMLCanvasElement|OffscreenCanvas}
*/
this.domElement = backend.getDomElement();
/**
* A reference to the current backend.
*
* @type {Backend}
*/
this.backend = backend;
/**
* The number of MSAA samples.
*
* @type {Number}
* @default 0
*/
this.samples = samples || ( antialias === true ) ? 4 : 0;
/**
* Whether the renderer should automatically clear the current rendering target
* before execute a `render()` call. The target can be the canvas (default framebuffer)
* or the current bound render target (custom framebuffer).
*
* @type {Boolean}
* @default true
*/
this.autoClear = true;
/**
* When `autoClear` is set to `true`, this property defines whether the renderer
* should clear the color buffer.
*
* @type {Boolean}
* @default true
*/
this.autoClearColor = true;
/**
* When `autoClear` is set to `true`, this property defines whether the renderer
* should clear the depth buffer.
*
* @type {Boolean}
* @default true
*/
this.autoClearDepth = true;
/**
* When `autoClear` is set to `true`, this property defines whether the renderer
* should clear the stencil buffer.
*
* @type {Boolean}
* @default true
*/
this.autoClearStencil = true;
/**
* Whether the default framebuffer should be transparent or opaque.
*
* @type {Boolean}
* @default true
*/
this.alpha = alpha;
/**
* Whether logarithmic depth buffer is enabled or not.
*
* @type {Boolean}
* @default false
*/
this.logarithmicDepthBuffer = logarithmicDepthBuffer;
/**
* Defines the output color space of the renderer.
*
* @type {String}
* @default SRGBColorSpace
*/
this.outputColorSpace = SRGBColorSpace;
/**
* Defines the tone mapping of the renderer.
*
* @type {Number}
* @default NoToneMapping
*/
this.toneMapping = NoToneMapping;
/**
* Defines the tone mapping exposure.
*
* @type {Number}
* @default 1
*/
this.toneMappingExposure = 1.0;
/**
* Whether the renderer should sort its render lists or not.
*
* Note: Sorting is used to attempt to properly render objects that have some degree of transparency.
* By definition, sorting objects may not work in all cases. Depending on the needs of application,
* it may be necessary to turn off sorting and use other methods to deal with transparency rendering
* e.g. manually determining each object's rendering order.
*
* @type {Boolean}
* @default true
*/
this.sortObjects = true;
/**
* Whether the default framebuffer should have a depth buffer or not.
*
* @type {Boolean}
* @default true
*/
this.depth = depth;
/**
* Whether the default framebuffer should have a stencil buffer or not.
*
* @type {Boolean}
* @default false
*/
this.stencil = stencil;
/**
* Holds a series of statistical information about the GPU memory
* and the rendering process. Useful for debugging and monitoring.
*
* @type {Info}
*/
this.info = new Info();
this.nodes = {
modelViewMatrix: null,
modelNormalViewMatrix: null
};
/**
* The node library defines how certain library objects like materials, lights
* or tone mapping functions are mapped to node types. This is required since
* although instances of classes like `MeshBasicMaterial` or `PointLight` can
* be part of the scene graph, they are internally represented as nodes for
* further processing.
*
* @type {NodeLibrary}
*/
this.library = new NodeLibrary();
/**
* A map-like data structure for managing lights.
*
* @type {Lighting}
*/
this.lighting = new Lighting();
// internals
/**
* This callback function can be used to provide a fallback backend, if the primary backend can't be targeted.
*
* @private
* @type {Function}
*/
this._getFallback = getFallback;
/**
* The renderer's pixel ration.
*
* @private
* @type {Number}
* @default 1
*/
this._pixelRatio = 1;
/**
* The width of the renderer's default framebuffer in logical pixel unit.
*
* @private
* @type {Number}
*/
this._width = this.domElement.width;
/**
* The height of the renderer's default framebuffer in logical pixel unit.
*
* @private
* @type {Number}
*/
this._height = this.domElement.height;
/**
* The viewport of the renderer in logical pixel unit.
*
* @private
* @type {Vector4}
*/
this._viewport = new Vector4( 0, 0, this._width, this._height );
/**
* The scissor rectangle of the renderer in logical pixel unit.
*
* @private
* @type {Vector4}
*/
this._scissor = new Vector4( 0, 0, this._width, this._height );
/**
* Whether the scissor test should be enabled or not.
*
* @private
* @type {Boolean}
*/
this._scissorTest = false;
/**
* A reference to a renderer module for managing shader attributes.
*
* @private
* @type {Attributes?}
* @default null
*/
this._attributes = null;
/**
* A reference to a renderer module for managing geometries.
*
* @private
* @type {Geometries?}
* @default null
*/
this._geometries = null;
/**
* A reference to a renderer module for managing node related logic.
*
* @private
* @type {Nodes?}
* @default null
*/
this._nodes = null;
/**
* A reference to a renderer module for managing the internal animation loop.
*
* @private
* @type {Animation?}
* @default null
*/
this._animation = null;
/**
* A reference to a renderer module for managing shader program bindings.
*
* @private
* @type {Bindings?}
* @default null
*/
this._bindings = null;
/**
* A reference to a renderer module for managing render objects.
*
* @private
* @type {RenderObjects?}
* @default null
*/
this._objects = null;
/**
* A reference to a renderer module for managing render and compute pipelines.
*
* @private
* @type {Pipelines?}
* @default null
*/
this._pipelines = null;
/**
* A reference to a renderer module for managing render bundles.
*
* @private
* @type {RenderBundles?}
* @default null
*/
this._bundles = null;
/**
* A reference to a renderer module for managing render lists.
*
* @private
* @type {RenderLists?}
* @default null
*/
this._renderLists = null;
/**
* A reference to a renderer module for managing render contexts.
*
* @private
* @type {RenderContexts?}
* @default null
*/
this._renderContexts = null;
/**
* A reference to a renderer module for managing textures.
*
* @private
* @type {Textures?}
* @default null
*/
this._textures = null;
/**
* A reference to a renderer module for backgrounds.
*
* @private
* @type {Background?}
* @default null
*/
this._background = null;
/**
* This fullscreen quad is used for internal render passes
* like the tone mapping and color space output pass.
*
* @private
* @type {QuadMesh}
*/
this._quad = new QuadMesh( new NodeMaterial() );
this._quad.material.name = 'Renderer_output';
/**
* A reference to the current render context.
*
* @private
* @type {RenderContext?}
* @default null
*/
this._currentRenderContext = null;
/**
* A custom sort function for the opaque render list.
*
* @private
* @type {Function?}
* @default null
*/
this._opaqueSort = null;
/**
* A custom sort function for the transparent render list.
*
* @private
* @type {Function?}
* @default null
*/
this._transparentSort = null;
/**
* The framebuffer target.
*
* @private
* @type {RenderTarget?}
* @default null
*/
this._frameBufferTarget = null;
const alphaClear = this.alpha === true ? 0 : 1;
/**
* The clear color value.
*
* @private
* @type {Color4}
*/
this._clearColor = new Color4( 0, 0, 0, alphaClear );
/**
* The clear depth value.
*
* @private
* @type {Number}
* @default 1
*/
this._clearDepth = 1;
/**
* The clear stencil value.
*
* @private
* @type {Number}
* @default 0
*/
this._clearStencil = 0;
/**
* The current render target.
*
* @private
* @type {RenderTarget?}
* @default null
*/
this._renderTarget = null;
/**
* The active cube face.
*
* @private
* @type {Number}
* @default 0
*/
this._activeCubeFace = 0;
/**
* The active mipmap level.
*
* @private
* @type {Number}
* @default 0
*/
this._activeMipmapLevel = 0;
/**
* The MRT setting.
*
* @private
* @type {MRTNode?}
* @default null
*/
this._mrt = null;
/**
* This function defines how a render object is going
* to be rendered.
*
* @private
* @type {Function?}
* @default null
*/
this._renderObjectFunction = null;
/**
* Used to keep track of the current render object function.
*
* @private
* @type {Function?}
* @default null
*/
this._currentRenderObjectFunction = null;
/**
* Used to keep track of the current render bundle.
*
* @private
* @type {RenderBundle?}
* @default null
*/
this._currentRenderBundle = null;
/**
* Next to `_renderObjectFunction()`, this function provides another hook
* for influencing the render process of a render object. It is meant for internal
* use and only relevant for `compileAsync()` right now. Instead of using
* the default logic of `_renderObjectDirect()` which actually draws the render object,
* a different function might be used which performs no draw but just the node
* and pipeline updates.
*
* @private
* @type {Function?}
* @default null
*/
this._handleObjectFunction = this._renderObjectDirect;
/**
* Indicates whether the device has been lost or not. In WebGL terms, the device
* lost is considered as a context lost. When this is set to `true`, rendering
* isn't possible anymore.
*
* @private
* @type {Boolean}
* @default false
*/
this._isDeviceLost = false;
/**
* A callback function that defines what should happen when a device/context lost occurs.
*
* @type {Function}
*/
this.onDeviceLost = this._onDeviceLost;
/**
* Defines the type of color buffers. The default `HalfFloatType` is recommend for
* best quality. To save memory and bandwidth, `UnsignedByteType` might be used.
* This will reduce rendering quality though.
*
* @private
* @type {Number}
* @default HalfFloatType
*/
this._colorBufferType = colorBufferType;
/**
* Whether the renderer has been initialized or not.
*
* @private
* @type {Boolean}
* @default false
*/
this._initialized = false;
/**
* A reference to the promise which initializes the renderer.
*
* @private
* @type {Promise?}
* @default null
*/
this._initPromise = null;
/**
* An array of compilation promises which are used in `compileAsync()`.
*
* @private
* @type {Array<Promise>?}
* @default null
*/
this._compilationPromises = null;
/**
* Whether the renderer should render transparent render objects or not.
*
* @type {Boolean}
* @default true
*/
this.transparent = true;
/**
* Whether the renderer should render opaque render objects or not.
*
* @type {Boolean}
* @default true
*/
this.opaque = true;
/**
* Shadow map configuration
* @typedef {Object} ShadowMapConfig
* @property {Boolean} enabled - Whether to globally enable shadows or not.
* @property {Number} type - The shadow map type.
*/
/**
* The renderer's shadow configuration.
*
* @type {module:Renderer~ShadowMapConfig}
*/
this.shadowMap = {
enabled: false,
type: PCFShadowMap
};
/**
* XR configuration.
* @typedef {Object} XRConfig
* @property {Boolean} enabled - Whether to globally enable XR or not.
*/
/**
* The renderer's XR manager.
*
* @type {XRManager}
*/
this.xr = new XRManager( this );
/**
* Debug configuration.
* @typedef {Object} DebugConfig
* @property {Boolean} checkShaderErrors - Whether shader errors should be checked or not.
* @property {Function} onShaderError - A callback function that is executed when a shader error happens. Only supported with WebGL 2 right now.
* @property {Function} getShaderAsync - Allows the get the raw shader code for the given scene, camera and 3D object.
*/
/**
* The renderer's debug configuration.
*
* @type {module:Renderer~DebugConfig}
*/
this.debug = {
checkShaderErrors: true,
onShaderError: null,
getShaderAsync: async ( scene, camera, object ) => {
await this.compileAsync( scene, camera );
const renderList = this._renderLists.get( scene, camera );
const renderContext = this._renderContexts.get( scene, camera, this._renderTarget );
const material = scene.overrideMaterial || object.material;
const renderObject = this._objects.get( object, material, scene, camera, renderList.lightsNode, renderContext, renderContext.clippingContext );
const { fragmentShader, vertexShader } = renderObject.getNodeBuilderState();
return { fragmentShader, vertexShader };
}
};
}
/**
* Initializes the renderer so it is ready for usage.
*
* @async
* @return {Promise} A Promise that resolves when the renderer has been initialized.
*/
async init() {
if ( this._initialized ) {
throw new Error( 'Renderer: Backend has already been initialized.' );
}
if ( this._initPromise !== null ) {
return this._initPromise;
}
this._initPromise = new Promise( async ( resolve, reject ) => {
let backend = this.backend;
try {
await backend.init( this );
} catch ( error ) {
if ( this._getFallback !== null ) {
// try the fallback
try {
this.backend = backend = this._getFallback( error );
await backend.init( this );
} catch ( error ) {
reject( error );
return;
}
} else {
reject( error );
return;
}
}
this._nodes = new Nodes( this, backend );
this._animation = new Animation( this._nodes, this.info );
this._attributes = new Attributes( backend );
this._background = new Background( this, this._nodes );
this._geometries = new Geometries( this._attributes, this.info );
this._textures = new Textures( this, backend, this.info );
this._pipelines = new Pipelines( backend, this._nodes );
this._bindings = new Bindings( backend, this._nodes, this._textures, this._attributes, this._pipelines, this.info );
this._objects = new RenderObjects( this, this._nodes, this._geometries, this._pipelines, this._bindings, this.info );
this._renderLists = new RenderLists( this.lighting );
this._bundles = new RenderBundles();
this._renderContexts = new RenderContexts();
//
this._animation.start();
this._initialized = true;
resolve();
} );
return this._initPromise;
}
/**
* The coordinate system of the renderer. The value of this property
* depends on the selected backend. Either `THREE.WebGLCoordinateSystem` or
* `THREE.WebGPUCoordinateSystem`.
*
* @readonly
* @type {Number}
*/
get coordinateSystem() {
return this.backend.coordinateSystem;
}
/**
* Compiles all materials in the given scene. This can be useful to avoid a
* phenomenon which is called "shader compilation stutter", which occurs when
* rendering an object with a new shader for the first time.
*
* If you want to add a 3D object to an existing scene, use the third optional
* parameter for applying the target scene. Note that the (target) scene's lighting
* and environment must be configured before calling this method.
*
* @async
* @param {Object3D} scene - The scene or 3D object to precompile.
* @param {Camera} camera - The camera that is used to render the scene.
* @param {Scene} targetScene - If the first argument is a 3D object, this parameter must represent the scene the 3D object is going to be added.
* @return {Promise<Array>} A Promise that resolves when the compile has been finished.
*/
async compileAsync( scene, camera, targetScene = null ) {
if ( this._isDeviceLost === true ) return;
if ( this._initialized === false ) await this.init();
// preserve render tree
const nodeFrame = this._nodes.nodeFrame;
const previousRenderId = nodeFrame.renderId;
const previousRenderContext = this._currentRenderContext;
const previousRenderObjectFunction = this._currentRenderObjectFunction;
const previousCompilationPromises = this._compilationPromises;
//
const sceneRef = ( scene.isScene === true ) ? scene : _scene;
if ( targetScene === null ) targetScene = scene;
const renderTarget = this._renderTarget;
const renderContext = this._renderContexts.get( targetScene, camera, renderTarget );
const activeMipmapLevel = this._activeMipmapLevel;
const compilationPromises = [];
this._currentRenderContext = renderContext;
this._currentRenderObjectFunction = this.renderObject;
this._handleObjectFunction = this._createObjectPipeline;
this._compilationPromises = compilationPromises;
nodeFrame.renderId ++;
//
nodeFrame.update();
//
renderContext.depth = this.depth;
renderContext.stencil = this.stencil;
if ( ! renderContext.clippingContext ) renderContext.clippingContext = new ClippingContext();
renderContext.clippingContext.updateGlobal( sceneRef, camera );
//
sceneRef.onBeforeRender( this, scene, camera, renderTarget );
//
const renderList = this._renderLists.get( scene, camera );
renderList.begin();
this._projectObject( scene, camera, 0, renderList, renderContext.clippingContext );
// include lights from target scene
if ( targetScene !== scene ) {
targetScene.traverseVisible( function ( object ) {
if ( object.isLight && object.layers.test( camera.layers ) ) {
renderList.pushLight( object );
}
} );
}
renderList.finish();
//
if ( renderTarget !== null ) {
this._textures.updateRenderTarget( renderTarget, activeMipmapLevel );
const renderTargetData = this._textures.get( renderTarget );
renderContext.textures = renderTargetData.textures;
renderContext.depthTexture = renderTargetData.depthTexture;
} else {
renderContext.textures = null;
renderContext.depthTexture = null;
}
//
this._background.update( sceneRef, renderList, renderContext );
// process render lists
const opaqueObjects = renderList.opaque;
const transparentObjects = renderList.transparent;
const transparentDoublePassObjects = renderList.transparentDoublePass;
const lightsNode = renderList.lightsNode;
if ( this.opaque === true && opaqueObjects.length > 0 ) this._renderObjects( opaqueObjects, camera, sceneRef, lightsNode );
if ( this.transparent === true && transparentObjects.length > 0 ) this._renderTransparents( transparentObjects, transparentDoublePassObjects, camera, sceneRef, lightsNode );
// restore render tree
nodeFrame.renderId = previousRenderId;
this._currentRenderContext = previousRenderContext;
this._currentRenderObjectFunction = previousRenderObjectFunction;
this._compilationPromises = previousCompilationPromises;
this._handleObjectFunction = this._renderObjectDirect;
// wait for all promises setup by backends awaiting compilation/linking/pipeline creation to complete
await Promise.all( compilationPromises );
}
/**
* Renders the scene in an async fashion.
*
* @async
* @param {Object3D} scene - The scene or 3D object to render.
* @param {Camera} camera - The camera.
* @return {Promise} A Promise that resolves when the render has been finished.
*/
async renderAsync( scene, camera ) {
if ( this._initialized === false ) await this.init();
this._renderScene( scene, camera );
}
/**
* Can be used to synchronize CPU operations with GPU tasks. So when this method is called,
* the CPU waits for the GPU to complete its operation (e.g. a compute task).
*
* @async
* @return {Promise} A Promise that resolves when synchronization has been finished.
*/
async waitForGPU() {
await this.backend.waitForGPU();
}
/**
* Sets the given MRT configuration.
*
* @param {MRTNode} mrt - The MRT node to set.
* @return {Renderer} A reference to this renderer.
*/
setMRT( mrt ) {
this._mrt = mrt;
return this;
}
/**
* Returns the MRT configuration.
*
* @return {MRTNode} The MRT configuration.
*/
getMRT() {
return this._mrt;
}
/**
* Returns the color buffer type.
*
* @return {Number} The color buffer type.
*/
getColorBufferType() {
return this._colorBufferType;
}
/**
* Default implementation of the device lost callback.
*
* @private
* @param {Object} info - Information about the context lost.
*/
_onDeviceLost( info ) {
let errorMessage = `THREE.WebGPURenderer: ${info.api} Device Lost:\n\nMessage: ${info.message}`;
if ( info.reason ) {
errorMessage += `\nReason: ${info.reason}`;
}
console.error( errorMessage );
this._isDeviceLost = true;
}
/**
* Renders the given render bundle.
*
* @private
* @param {Object} bundle - Render bundle data.
* @param {Scene} sceneRef - The scene the render bundle belongs to.
* @param {LightsNode} lightsNode - The current lights node.
*/
_renderBundle( bundle, sceneRef, lightsNode ) {
const { bundleGroup, camera, renderList } = bundle;
const renderContext = this._currentRenderContext;
//
const renderBundle = this._bundles.get( bundleGroup, camera );
const renderBundleData = this.backend.get( renderBundle );
if ( renderBundleData.renderContexts === undefined ) renderBundleData.renderContexts = new Set();
//
const needsUpdate = bundleGroup.version !== renderBundleData.version;
const renderBundleNeedsUpdate = renderBundleData.renderContexts.has( renderContext ) === false || needsUpdate;
renderBundleData.renderContexts.add( renderContext );
if ( renderBundleNeedsUpdate ) {
this.backend.beginBundle( renderContext );
if ( renderBundleData.renderObjects === undefined || needsUpdate ) {
renderBundleData.renderObjects = [];
}
this._currentRenderBundle = renderBundle;
const opaqueObjects = renderList.opaque;
if ( this.opaque === true && opaqueObjects.length > 0 ) this._renderObjects( opaqueObjects, camera, sceneRef, lightsNode );
this._currentRenderBundle = null;
//
this.backend.finishBundle( renderContext, renderBundle );
renderBundleData.version = bundleGroup.version;
} else {
const { renderObjects } = renderBundleData;
for ( let i = 0, l = renderObjects.length; i < l; i ++ ) {
const renderObject = renderObjects[ i ];
if ( this._nodes.needsRefresh( renderObject ) ) {
this._nodes.updateBefore( renderObject );
this._nodes.updateForRender( renderObject );
this._bindings.updateForRender( renderObject );
this._nodes.updateAfter( renderObject );
}
}
}
this.backend.addBundle( renderContext, renderBundle );
}
/**
* Renders the scene or 3D object with the given camera. This method can only be called
* if the renderer has been initialized.
*
* The target of the method is the default framebuffer (meaning the canvas)
* or alternatively a render target when specified via `setRenderTarget()`.
*
* @param {Object3D} scene - The scene or 3D object to render.
* @param {Camera} camera - The camera to render the scene with.
* @return {Promise?} A Promise that resolve when the scene has been rendered.
* Only returned when the renderer has not been initialized.
*/
render( scene, camera ) {
if ( this._initialized === false ) {
console.warn( 'THREE.Renderer: .render() called before the backend is initialized. Try using .renderAsync() instead.' );
return this.renderAsync( scene, camera );
}
this._renderScene( scene, camera );
}
/**
* Returns an internal render target which is used when computing the output tone mapping
* and color space conversion. Unlike in `WebGLRenderer`, this is done in a separate render
* pass and not inline to achieve more correct results.
*
* @private
* @return {RenderTarget?} The render target. The method returns `null` if no output conversion should be applied.
*/
_getFrameBufferTarget() {
const { currentToneMapping, currentColorSpace } = this;
const useToneMapping = currentToneMapping !== NoToneMapping;
const useColorSpace = currentColorSpace !== LinearSRGBColorSpace;
if ( useToneMapping === false && useColorSpace === false ) return null;
const { width, height } = this.getDrawingBufferSize( _drawingBufferSize );
const { depth, stencil } = this;
let frameBufferTarget = this._frameBufferTarget;
if ( frameBufferTarget === null ) {
frameBufferTarget = new RenderTarget( width, height, {
depthBuffer: depth,
stencilBuffer: stencil,
type: this._colorBufferType,
format: RGBAFormat,
colorSpace: LinearSRGBColorSpace,
generateMipmaps: false,
minFilter: LinearFilter,
magFilter: LinearFilter,
samples: this.samples
} );
frameBufferTarget.isPostProcessingRenderTarget = true;
this._frameBufferTarget = frameBufferTarget;
}
frameBufferTarget.depthBuffer = depth;
frameBufferTarget.stencilBuffer = stencil;
frameBufferTarget.setSize( width, height );
frameBufferTarget.viewport.copy( this._viewport );
frameBufferTarget.scissor.copy( this._scissor );
frameBufferTarget.viewport.multiplyScalar( this._pixelRatio );
frameBufferTarget.scissor.multiplyScalar( this._pixelRatio );
frameBufferTarget.scissorTest = this._scissorTest;
return frameBufferTarget;
}
/**
* Renders the scene or 3D object with the given camera.
*
* @private
* @param {Object3D} scene - The scene or 3D object to render.
* @param {Camera} camera - The camera to render the scene with.
* @param {Boolean} [useFrameBufferTarget=true] - Whether to use a framebuffer target or not.
* @return {RenderContext} The current render context.
*/
_renderScene( scene, camera, useFrameBufferTarget = true ) {
if ( this._isDeviceLost === true ) return;
const frameBufferTarget = useFrameBufferTarget ? this._getFrameBufferTarget() : null;
// preserve render tree
const nodeFrame = this._nodes.nodeFrame;
const previousRenderId = nodeFrame.renderId;
const previousRenderContext = this._currentRenderContext;
const previousRenderObjectFunction = this._currentRenderObjectFunction;
//
const sceneRef = ( scene.isScene === true ) ? scene : _scene;
const outputRenderTarget = this._renderTarget;
const activeCubeFace = this._activeCubeFace;
const activeMipmapLevel = this._activeMipmapLevel;
//
let renderTarget;
if ( frameBufferTarget !== null ) {
renderTarget = frameBufferTarget;
this.setRenderTarget( renderTarget );
} else {
renderTarget = outputRenderTarget;
}
//
const renderContext = this._renderContexts.get( scene, camera, renderTarget );
this._currentRenderContext = renderContext;
this._currentRenderObjectFunction = this._renderObjectFunction || this.renderObject;
//
this.info.calls ++;
this.info.render.calls ++;
this.info.render.frameCalls ++;
nodeFrame.renderId = this.info.calls;
//
const coordinateSystem = this.coordinateSystem;
const xr = this.xr;
if ( camera.coordinateSystem !== coordinateSystem && xr.isPresenting === false ) {
camera.coordinateSystem = coordinateSystem;
camera.updateProjectionMatrix();
if ( camera.isArrayCamera ) {
for ( const subCamera of camera.cameras ) {
subCamera.coordinateSystem = coordinateSystem;
subCamera.updateProjectionMatrix();
}
}
}
//
if ( scene.matrixWorldAutoUpdate === true ) scene.updateMatrixWorld();
if ( camera.parent === null && camera.matrixWorldAutoUpdate === true ) camera.updateMatrixWorld();
if ( xr.enabled === true && xr.isPresenting === true ) {
if ( xr.cameraAutoUpdate === true ) xr.updateCamera( camera );
camera = xr.getCamera(); // use XR camera for rendering
}
//
let viewport = this._viewport;
let scissor = this._scissor;
let pixelRatio = this._pixelRatio;
if ( renderTarget !== null ) {
viewport = renderTarget.viewport;
scissor = renderTarget.scissor;
pixelRatio = 1;
}
this.getDrawingBufferSize( _drawingBufferSize );
_screen.set( 0, 0, _drawingBufferSize.width, _drawingBufferSize.height );
const minDepth = ( viewport.minDepth === undefined ) ? 0 : viewport.minDepth;
const maxDepth = ( viewport.maxDepth === undefined ) ? 1 : viewport.maxDepth;
renderContext.viewportValue.copy( viewport ).multiplyScalar( pixelRatio ).floor();
renderContext.viewportValue.width >>= activeMipmapLevel;
renderContext.viewportValue.height >>= activeMipmapLevel;
renderContext.viewportValue.minDepth = minDepth;
renderContext.viewportValue.maxDepth = maxDepth;
renderContext.viewport = renderContext.viewportValue.equals( _screen ) === false;
renderContext.scissorValue.copy( scissor ).multiplyScalar( pixelRatio ).floor();
renderContext.scissor = this._scissorTest && renderContext.scissorValue.equals( _screen ) === false;
renderContext.scissorValue.width >>= activeMipmapLevel;
renderContext.scissorValue.height >>= activeMipmapLevel;
if ( ! renderContext.clippingContext ) renderContext.clippingContext = new ClippingContext();
renderContext.clippingContext.updateGlobal( sceneRef, camera );
//
sceneRef.onBeforeRender( this, scene, camera, renderTarget );
//
_projScreenMatrix.multiplyMatrices( camera.projectionMatrix, camera.matrixWorldInverse );
_frustum.setFromProjectionMatrix( _projScreenMatrix, coordinateSystem );
const renderList = this._renderLists.get( scene, camera );
renderList.begin();
this._projectObject( scene, camera, 0, renderList, renderContext.clippingContext );
renderList.finish();
if ( this.sortObjects === true ) {
renderList.sort( this._opaqueSort, this._transparentSort );
}
//
if ( renderTarget !== null ) {
this._textures.updateRenderTarget( renderTarget, activeMipmapLevel );
const renderTargetData = this._textures.get( renderTarget );
renderContext.textures = renderTargetData.textures;
renderContext.depthTexture = renderTargetData.depthTexture;
renderContext.width = renderTargetData.width;
renderContext.height = renderTargetData.height;
renderContext.renderTarget = renderTarget;
renderContext.depth = renderTarget.depthBuffer;
renderContext.stencil = renderTarget.stencilBuffer;
} else {
renderContext.textures = null;
renderContext.depthTexture = null;
renderContext.width = this.domElement.width;
renderContext.height = this.domElement.height;
renderContext.depth = this.depth;
renderContext.stencil = this.stencil;
}
renderContext.width >>= activeMipmapLevel;
renderContext.height >>= activeMipmapLevel;
renderContext.activeCubeFace = activeCubeFace;
renderContext.activeMipmapLevel = activeMipmapLevel;
renderContext.occlusionQueryCount = renderList.occlusionQueryCount;
//
this._background.update( sceneRef, renderList, renderContext );
//
this.backend.beginRender( renderContext );
// process render lists
const {
bundles,
lightsNode,
transparentDoublePass: transparentDoublePassObjects,
transparent: transparentObjects,
opaque: opaqueObjects
} = renderList;
if ( bundles.length > 0 ) this._renderBundles( bundles, sceneRef, lightsNode );
if ( this.opaque === true && opaqueObjects.length > 0 ) this._renderObjects( opaqueObjects, camera, sceneRef, lightsNode );
if ( this.transparent === true && transparentObjects.length > 0 ) this._renderTransparents( transparentObjects, transparentDoublePassObjects, camera, sceneRef, lightsNode );
// finish render pass
this.backend.finishRender( renderContext );
// restore render tree
nodeFrame.renderId = previousRenderId;
this._currentRenderContext = previousRenderContext;
this._currentRenderObjectFunction = previousRenderObjectFunction;
//
if ( frameBufferTarget !== null ) {
this.setRenderTarget( outputRenderTarget, activeCubeFace, activeMipmapLevel );
const quad = this._quad;
if ( this._nodes.hasOutputChange( renderTarget.texture ) ) {
quad.material.fragmentNode = this._nodes.getOutputNode( renderTarget.texture );
quad.material.needsUpdate = true;
}
this._renderScene( quad, quad.camera, false );
}
//
sceneRef.onAfterRender( this, scene, camera, renderTarget );
//
return renderContext;
}
/**
* Returns the maximum available anisotropy for texture filtering.
*
* @return {Number} The maximum available anisotropy.
*/
getMaxAnisotropy() {
return this.backend.getMaxAnisotropy();
}
/**
* Returns the active cube face.
*
* @return {Number} The active cube face.
*/
getActiveCubeFace() {
return this._activeCubeFace;
}
/**
* Returns the active mipmap level.
*
* @return {Number} The active mipmap level.
*/
getActiveMipmapLevel() {
return this._activeMipmapLevel;
}
/**
* Applications are advised to always define the animation loop
* with this method and not manually with `requestAnimationFrame()`
* for best compatibility.
*
* @async
* @param {Function} callback - The application's animation loop.
* @return {Promise} A Promise that resolves when the set has been executed.
*/
async setAnimationLoop( callback ) {
if ( this._initialized === false ) await this.init();
this._animation.setAnimationLoop( callback );
}
/**
* Can be used to transfer buffer data from a storage buffer attribute
* from the GPU to the CPU in context of compute shaders.
*
* @async
* @param {StorageBufferAttribute} attribute - The storage buffer attribute.
* @return {Promise<ArrayBuffer>} A promise that resolves with the buffer data when the data are ready.
*/
async getArrayBufferAsync( attribute ) {
return await this.backend.getArrayBufferAsync( attribute );
}
/**
* Returns the rendering context.
*
* @return {GPUCanvasContext|WebGL2RenderingContext} The rendering context.
*/
getContext() {
return this.backend.getContext();
}
/**
* Returns the pixel ratio.
*
* @return {Number} The pixel ratio.
*/
getPixelRatio() {
return this._pixelRatio;
}
/**
* Returns the drawing buffer size in physical pixels. This method honors the pixel ratio.
*
* @param {Vector2} target - The method writes the result in this target object.
* @return {Vector2} The drawing buffer size.
*/
getDrawingBufferSize( target ) {
return target.set( this._width * this._pixelRatio, this._height * this._pixelRatio ).floor();
}
/**
* Returns the renderer's size in logical pixels. This method does not honor the pixel ratio.
*
* @param {Vector2} target - The method writes the result in this target object.
* @return {Vector2} The drawing buffer size.
*/
getSize( target ) {
return target.set( this._width, this._height );
}
/**
* Sets the given pixel ration and resizes the canvas if necessary.
*
* @param {Number} [value=1] - The pixel ratio.
*/
setPixelRatio( value = 1 ) {
if ( this._pixelRatio === value ) return;
this._pixelRatio = value;
this.setSize( this._width, this._height, false );
}
/**
* This method allows to define the drawing buffer size by specifying
* width, height and pixel ratio all at once. The size of the drawing
* buffer is computed with this formula:
* ````
* size.x = width * pixelRatio;
* size.y = height * pixelRatio;
*```
*
* @param {Number} width - The width in logical pixels.
* @param {Number} height - The height in logical pixels.
* @param {Number} pixelRatio - The pixel ratio.
*/
setDrawingBufferSize( width, height, pixelRatio ) {
this._width = width;
this._height = height;
this._pixelRatio = pixelRatio;
this.domElement.width = Math.floor( width * pixelRatio );
this.domElement.height = Math.floor( height * pixelRatio );
this.setViewport( 0, 0, width, height );
if ( this._initialized ) this.backend.updateSize();
}
/**
* Sets the size of the renderer.
*
* @param {Number} width - The width in logical pixels.
* @param {Number} height - The height in logical pixels.
* @param {Boolean} [updateStyle=true] - Whether to update the `style` attribute of the canvas or not.
*/
setSize( width, height, updateStyle = true ) {
this._width = width;
this._height = height;
this.domElement.width = Math.floor( width * this._pixelRatio );
this.domElement.height = Math.floor( height * this._pixelRatio );
if ( updateStyle === true ) {
this.domElement.style.width = width + 'px';
this.domElement.style.height = height + 'px';
}
this.setViewport( 0, 0, width, height );
if ( this._initialized ) this.backend.updateSize();
}
/**
* Defines a manual sort function for the opaque render list.
* Pass `null` to use the default sort.
*
* @param {Function} method - The sort function.
*/
setOpaqueSort( method ) {
this._opaqueSort = method;
}
/**
* Defines a manual sort function for the transparent render list.
* Pass `null` to use the default sort.
*
* @param {Function} method - The sort function.
*/
setTransparentSort( method ) {
this._transparentSort = method;
}
/**
* Returns the scissor rectangle.
*
* @param {Vector4} target - The method writes the result in this target object.
* @return {Vector4} The scissor rectangle.
*/
getScissor( target ) {
const scissor = this._scissor;
target.x = scissor.x;
target.y = scissor.y;
target.width = scissor.width;
target.height = scissor.height;
return target;
}
/**
* Defines the scissor rectangle.
*
* @param {Number | Vector4} x - The horizontal coordinate for the lower left corner of the box in logical pixel unit.
* Instead of passing four arguments, the method also works with a single four-dimensional vector.
* @param {Number} y - The vertical coordinate for the lower left corner of the box in logical pixel unit.
* @param {Number} width - The width of the scissor box in logical pixel unit.
* @param {Number} height - The height of the scissor box in logical pixel unit.
*/
setScissor( x, y, width, height ) {
const scissor = this._scissor;
if ( x.isVector4 ) {
scissor.copy( x );
} else {
scissor.set( x, y, width, height );
}
}
/**
* Returns the scissor test value.
*
* @return {Boolean} Whether the scissor test should be enabled or not.
*/
getScissorTest() {
return this._scissorTest;
}
/**
* Defines the scissor test.
*
* @param {Boolean} boolean - Whether the scissor test should be enabled or not.
*/
setScissorTest( boolean ) {
this._scissorTest = boolean;
this.backend.setScissorTest( boolean );
}
/**
* Returns the viewport definition.
*
* @param {Vector4} target - The method writes the result in this target object.
* @return {Vector4} The viewport definition.
*/
getViewport( target ) {
return target.copy( this._viewport );
}
/**
* Defines the viewport.
*
* @param {Number | Vector4} x - The horizontal coordinate for the lower left corner of the viewport origin in logical pixel unit.
* @param {Number} y - The vertical coordinate for the lower left corner of the viewport origin in logical pixel unit.
* @param {Number} width - The width of the viewport in logical pixel unit.
* @param {Number} height - The height of the viewport in logical pixel unit.
* @param {Number} minDepth - The minimum depth value of the viewport. WebGPU only.
* @param {Number} maxDepth - The maximum depth value of the viewport. WebGPU only.
*/
setViewport( x, y, width, height, minDepth = 0, maxDepth = 1 ) {
const viewport = this._viewport;
if ( x.isVector4 ) {
viewport.copy( x );
} else {
viewport.set( x, y, width, height );
}
viewport.minDepth = minDepth;
viewport.maxDepth = maxDepth;
}
/**
* Returns the clear color.
*
* @param {Color} target - The method writes the result in this target object.
* @return {Color} The clear color.
*/
getClearColor( target ) {
return target.copy( this._clearColor );
}
/**
* Defines the clear color and optionally the clear alpha.
*
* @param {Color} color - The clear color.
* @param {Number} [alpha=1] - The clear alpha.
*/
setClearColor( color, alpha = 1 ) {
this._clearColor.set( color );
this._clearColor.a = alpha;
}
/**
* Returns the clear alpha.
*
* @return {Number} The clear alpha.
*/
getClearAlpha() {
return this._clearColor.a;
}
/**
* Defines the clear alpha.
*
* @param {Number} alpha - The clear alpha.
*/
setClearAlpha( alpha ) {
this._clearColor.a = alpha;
}
/**
* Returns the clear depth.
*
* @return {Number} The clear depth.
*/
getClearDepth() {
return this._clearDepth;
}
/**
* Defines the clear depth.
*
* @param {Number} depth - The clear depth.
*/
setClearDepth( depth ) {
this._clearDepth = depth;
}
/**
* Returns the clear stencil.
*
* @return {Number} The clear stencil.
*/
getClearStencil() {
return this._clearStencil;
}
/**
* Defines the clear stencil.
*
* @param {Number} stencil - The clear stencil.
*/
setClearStencil( stencil ) {
this._clearStencil = stencil;
}
/**
* This method performs an occlusion query for the given 3D object.
* It returns `true` if the given 3D object is fully occluded by other
* 3D objects in the scene.
*
* @param {Object3D} object - The 3D object to test.
* @return {Boolean} Whether the 3D object is fully occluded or not.
*/
isOccluded( object ) {
const renderContext = this._currentRenderContext;
return renderContext && this.backend.isOccluded( renderContext, object );
}
/**
* Performs a manual clear operation. This method ignores `autoClear` properties.
*
* @param {Boolean} [color=true] - Whether the color buffer should be cleared or not.
* @param {Boolean} [depth=true] - Whether the depth buffer should be cleared or not.
* @param {Boolean} [stencil=true] - Whether the stencil buffer should be cleared or not.
* @return {Promise} A Promise that resolves when the clear operation has been executed.
* Only returned when the renderer has not been initialized.
*/
clear( color = true, depth = true, stencil = true ) {
if ( this._initialized === false ) {
console.warn( 'THREE.Renderer: .clear() called before the backend is initialized. Try using .clearAsync() instead.' );
return this.clearAsync( color, depth, stencil );
}
const renderTarget = this._renderTarget || this._getFrameBufferTarget();
let renderContext = null;
if ( renderTarget !== null ) {
this._textures.updateRenderTarget( renderTarget );
const renderTargetData = this._textures.get( renderTarget );
renderContext = this._renderContexts.getForClear( renderTarget );
renderContext.textures = renderTargetData.textures;
renderContext.depthTexture = renderTargetData.depthTexture;
renderContext.width = renderTargetData.width;
renderContext.height = renderTargetData.height;
renderContext.renderTarget = renderTarget;
renderContext.depth = renderTarget.depthBuffer;
renderContext.stencil = renderTarget.stencilBuffer;
}
// #30329
renderContext.clearColorValue = this._clearColor;
this.backend.clear( color, depth, stencil, renderContext );
if ( renderTarget !== null && this._renderTarget === null ) {
// If a color space transform or tone mapping is required,
// the clear operation clears the intermediate renderTarget texture, but does not update the screen canvas.
const quad = this._quad;
if ( this._nodes.hasOutputChange( renderTarget.texture ) ) {
quad.material.fragmentNode = this._nodes.getOutputNode( renderTarget.texture );
quad.material.needsUpdate = true;
}
this._renderScene( quad, quad.camera, false );
}
}
/**
* Performs a manual clear operation of the color buffer. This method ignores `autoClear` properties.
*
* @return {Promise} A Promise that resolves when the clear operation has been executed.
* Only returned when the renderer has not been initialized.
*/
clearColor() {
return this.clear( true, false, false );
}
/**
* Performs a manual clear operation of the depth buffer. This method ignores `autoClear` properties.
*
* @return {Promise} A Promise that resolves when the clear operation has been executed.
* Only returned when the renderer has not been initialized.
*/
clearDepth() {
return this.clear( false, true, false );
}
/**
* Performs a manual clear operation of the stencil buffer. This method ignores `autoClear` properties.
*
* @return {Promise} A Promise that resolves when the clear operation has been executed.
* Only returned when the renderer has not been initialized.
*/
clearStencil() {
return this.clear( false, false, true );
}
/**
* Async version of {@link module:Renderer~Renderer#clear}.
*
* @async
* @param {Boolean} [color=true] - Whether the color buffer should be cleared or not.
* @param {Boolean} [depth=true] - Whether the depth buffer should be cleared or not.
* @param {Boolean} [stencil=true] - Whether the stencil buffer should be cleared or not.
* @return {Promise} A Promise that resolves when the clear operation has been executed.
*/
async clearAsync( color = true, depth = true, stencil = true ) {
if ( this._initialized === false ) await this.init();
this.clear( color, depth, stencil );
}
/**
* Async version of {@link module:Renderer~Renderer#clearColor}.
*
* @async
* @return {Promise} A Promise that resolves when the clear operation has been executed.
*/
async clearColorAsync() {
this.clearAsync( true, false, false );
}
/**
* Async version of {@link module:Renderer~Renderer#clearDepth}.
*
* @async
* @return {Promise} A Promise that resolves when the clear operation has been executed.
*/
async clearDepthAsync() {
this.clearAsync( false, true, false );
}
/**
* Async version of {@link module:Renderer~Renderer#clearStencil}.
*
* @async
* @return {Promise} A Promise that resolves when the clear operation has been executed.
*/
async clearStencilAsync() {
this.clearAsync( false, false, true );
}
/**
* The current output tone mapping of the renderer. When a render target is set,
* the output tone mapping is always `NoToneMapping`.
*
* @type {Number}
*/
get currentToneMapping() {
return this._renderTarget !== null ? NoToneMapping : this.toneMapping;
}
/**
* The current output color space of the renderer. When a render target is set,
* the output color space is always `LinearSRGBColorSpace`.
*
* @type {String}
*/
get currentColorSpace() {
return this._renderTarget !== null ? LinearSRGBColorSpace : this.outputColorSpace;
}
/**
* Frees all internal resources of the renderer. Call this method if the renderer
* is no longer in use by your app.
*/
dispose() {
this.info.dispose();
this.backend.dispose();
this._animation.dispose();
this._objects.dispose();
this._pipelines.dispose();
this._nodes.dispose();
this._bindings.dispose();
this._renderLists.dispose();
this._renderContexts.dispose();
this._textures.dispose();
if ( this._frameBufferTarget !== null ) this._frameBufferTarget.dispose();
Object.values( this.backend.timestampQueryPool ).forEach( queryPool => {
if ( queryPool !== null ) queryPool.dispose();
} );
this.setRenderTarget( null );
this.setAnimationLoop( null );
}
/**
* Sets the given render target. Calling this method means the renderer does not
* target the default framebuffer (meaning the canvas) anymore but a custom framebuffer.
* Use `null` as the first argument to reset the state.
*
* @param {RenderTarget?} renderTarget - The render target to set.
* @param {Number} [activeCubeFace=0] - The active cube face.
* @param {Number} [activeMipmapLevel=0] - The active mipmap level.
*/
setRenderTarget( renderTarget, activeCubeFace = 0, activeMipmapLevel = 0 ) {
this._renderTarget = renderTarget;
this._activeCubeFace = activeCubeFace;
this._activeMipmapLevel = activeMipmapLevel;
}
/**
* Returns the current render target.
*
* @return {RenderTarget?} The render target. Returns `null` if no render target is set.
*/
getRenderTarget() {
return this._renderTarget;
}
/**
* Callback for {@link module:Renderer~Renderer#setRenderObjectFunction}.
*
* @callback renderObjectFunction
* @param {Object3D} object - The 3D object.
* @param {Scene} scene - The scene the 3D object belongs to.
* @param {Camera} camera - The camera the object should be rendered with.
* @param {BufferGeometry} geometry - The object's geometry.
* @param {Material} material - The object's material.
* @param {Object?} group - Only relevant for objects using multiple materials. This represents a group entry from the respective `BufferGeometry`.
* @param {LightsNode} lightsNode - The current lights node.
* @param {ClippingContext} clippingContext - The clipping context.
* @param {String?} [passId=null] - An optional ID for identifying the pass.
*/
/**
* Sets the given render object function. Calling this method overwrites the default implementation
* which is {@link module:Renderer~Renderer#renderObject}. Defining a custom function can be useful
* if you want to modify the way objects are rendered. For example you can define things like "every
* object that has material of a certain type should perform a pre-pass with a special overwrite material".
* The custom function must always call `renderObject()` in its implementation.
*
* Use `null` as the first argument to reset the state.
*
* @param {module:Renderer~renderObjectFunction?} renderObjectFunction - The render object function.
*/
setRenderObjectFunction( renderObjectFunction ) {
this._renderObjectFunction = renderObjectFunction;
}
/**
* Returns the current render object function.
*
* @return {Function?} The current render object function. Returns `null` if no function is set.
*/
getRenderObjectFunction() {
return this._renderObjectFunction;
}
/**
* Execute a single or an array of compute nodes. This method can only be called
* if the renderer has been initialized.
*
* @param {Node|Array<Node>} computeNodes - The compute node(s).
* @return {Promise?} A Promise that resolve when the compute has finished. Only returned when the renderer has not been initialized.
*/
compute( computeNodes ) {
if ( this._isDeviceLost === true ) return;
if ( this._initialized === false ) {
console.warn( 'THREE.Renderer: .compute() called before the backend is initialized. Try using .computeAsync() instead.' );
return this.computeAsync( computeNodes );
}
//
const nodeFrame = this._nodes.nodeFrame;
const previousRenderId = nodeFrame.renderId;
//
this.info.calls ++;
this.info.compute.calls ++;
this.info.compute.frameCalls ++;
nodeFrame.renderId = this.info.calls;
//
const backend = this.backend;
const pipelines = this._pipelines;
const bindings = this._bindings;
const nodes = this._nodes;
const computeList = Array.isArray( computeNodes ) ? computeNodes : [ computeNodes ];
if ( computeList[ 0 ] === undefined || computeList[ 0 ].isComputeNode !== true ) {
throw new Error( 'THREE.Renderer: .compute() expects a ComputeNode.' );
}
backend.beginCompute( computeNodes );
for ( const computeNode of computeList ) {
// onInit
if ( pipelines.has( computeNode ) === false ) {
const dispose = () => {
computeNode.removeEventListener( 'dispose', dispose );
pipelines.delete( computeNode );
bindings.delete( computeNode );
nodes.delete( computeNode );
};
computeNode.addEventListener( 'dispose', dispose );
//
const onInitFn = computeNode.onInitFunction;
if ( onInitFn !== null ) {
onInitFn.call( computeNode, { renderer: this } );
}
}
nodes.updateForCompute( computeNode );
bindings.updateForCompute( computeNode );
const computeBindings = bindings.getForCompute( computeNode );
const computePipeline = pipelines.getForCompute( computeNode, computeBindings );
backend.compute( computeNodes, computeNode, computeBindings, computePipeline );
}
backend.finishCompute( computeNodes );
//
nodeFrame.renderId = previousRenderId;
}
/**
* Execute a single or an array of compute nodes.
*
* @async
* @param {Node|Array<Node>} computeNodes - The compute node(s).
* @return {Promise} A Promise that resolve when the compute has finished.
*/
async computeAsync( computeNodes ) {
if ( this._initialized === false ) await this.init();
this.compute( computeNodes );
}
/**
* Checks if the given feature is supported by the selected backend.
*
* @async
* @param {String} name - The feature's name.
* @return {Promise<Boolean>} A Promise that resolves with a bool that indicates whether the feature is supported or not.
*/
async hasFeatureAsync( name ) {
if ( this._initialized === false ) await this.init();
return this.backend.hasFeature( name );
}
async resolveTimestampsAsync( type = 'render' ) {
if ( this._initialized === false ) await this.init();
return this.backend.resolveTimestampsAsync( type );
}
/**
* Checks if the given feature is supported by the selected backend. If the
* renderer has not been initialized, this method always returns `false`.
*
* @param {String} name - The feature's name.
* @return {Boolean} Whether the feature is supported or not.
*/
hasFeature( name ) {
if ( this._initialized === false ) {
console.warn( 'THREE.Renderer: .hasFeature() called before the backend is initialized. Try using .hasFeatureAsync() instead.' );
return false;
}
return this.backend.hasFeature( name );
}
/**
* Returns `true` when the renderer has been initialized.
*
* @return {Boolean} Whether the renderer has been initialized or not.
*/
hasInitialized() {
return this._initialized;
}
/**
* Initializes the given textures. Useful for preloading a texture rather than waiting until first render
* (which can cause noticeable lags due to decode and GPU upload overhead).
*
* @async
* @param {Texture} texture - The texture.
* @return {Promise} A Promise that resolves when the texture has been initialized.
*/
async initTextureAsync( texture ) {
if ( this._initialized === false ) await this.init();
this._textures.updateTexture( texture );
}
/**
* Initializes the given textures. Useful for preloading a texture rather than waiting until first render
* (which can cause noticeable lags due to decode and GPU upload overhead).
*
* This method can only be used if the renderer has been initialized.
*
* @param {Texture} texture - The texture.
*/
initTexture( texture ) {
if ( this._initialized === false ) {
console.warn( 'THREE.Renderer: .initTexture() called before the backend is initialized. Try using .initTextureAsync() instead.' );
}
this._textures.updateTexture( texture );
}
/**
* Copies the current bound framebuffer into the given texture.
*
* @param {FramebufferTexture} framebufferTexture - The texture.
* @param {Vector2|Vector4} rectangle - A two or four dimensional vector that defines the rectangular portion of the framebuffer that should be copied.
*/
copyFramebufferToTexture( framebufferTexture, rectangle = null ) {
if ( rectangle !== null ) {
if ( rectangle.isVector2 ) {
rectangle = _vector4.set( rectangle.x, rectangle.y, framebufferTexture.image.width, framebufferTexture.image.height ).floor();
} else if ( rectangle.isVector4 ) {
rectangle = _vector4.copy( rectangle ).floor();
} else {
console.error( 'THREE.Renderer.copyFramebufferToTexture: Invalid rectangle.' );
return;
}
} else {
rectangle = _vector4.set( 0, 0, framebufferTexture.image.width, framebufferTexture.image.height );
}
//
let renderContext = this._currentRenderContext;
let renderTarget;
if ( renderContext !== null ) {
renderTarget = renderContext.renderTarget;
} else {
renderTarget = this._renderTarget || this._getFrameBufferTarget();
if ( renderTarget !== null ) {
this._textures.updateRenderTarget( renderTarget );
renderContext = this._textures.get( renderTarget );
}
}
//
this._textures.updateTexture( framebufferTexture, { renderTarget } );
this.backend.copyFramebufferToTexture( framebufferTexture, renderContext, rectangle );
}
/**
* Copies data of source texture into a destination texture.
*
* @param {Texture} srcTexture - The source texture.
* @param {Texture} dstTexture - The destination texture.
* @param {Box2|Box3} [srcRegion=null] - A bounding box which describes the source region. Can be two or three-dimensional.
* @param {Vector2|Vector3} [dstPosition=null] - A vector that represents the origin of the destination region. Can be two or three-dimensional.
* @param {Number} level - The mipmap level to copy.
*/
copyTextureToTexture( srcTexture, dstTexture, srcRegion = null, dstPosition = null, level = 0 ) {
this._textures.updateTexture( srcTexture );
this._textures.updateTexture( dstTexture );
this.backend.copyTextureToTexture( srcTexture, dstTexture, srcRegion, dstPosition, level );
}
/**
* Reads pixel data from the given render target.
*
* @async
* @param {RenderTarget} renderTarget - The render target to read from.
* @param {Number} x - The `x` coordinate of the copy region's origin.
* @param {Number} y - The `y` coordinate of the copy region's origin.
* @param {Number} width - The width of the copy region.
* @param {Number} height - The height of the copy region.
* @param {Number} [textureIndex=0] - The texture index of a MRT render target.
* @param {Number} [faceIndex=0] - The active cube face index.
* @return {Promise<TypedArray>} A Promise that resolves when the read has been finished. The resolve provides the read data as a typed array.
*/
async readRenderTargetPixelsAsync( renderTarget, x, y, width, height, textureIndex = 0, faceIndex = 0 ) {
return this.backend.copyTextureToBuffer( renderTarget.textures[ textureIndex ], x, y, width, height, faceIndex );
}
/**
* Analyzes the given 3D object's hierarchy and builds render lists from the
* processed hierarchy.
*
* @param {Object3D} object - The 3D object to process (usually a scene).
* @param {Camera} camera - The camera the object is rendered with.
* @param {Number} groupOrder - The group order is derived from the `renderOrder` of groups and is used to group 3D objects within groups.
* @param {RenderList} renderList - The current render list.
* @param {ClippingContext} clippingContext - The current clipping context.
*/
_projectObject( object, camera, groupOrder, renderList, clippingContext ) {
if ( object.visible === false ) return;
const visible = object.layers.test( camera.layers );
if ( visible ) {
if ( object.isGroup ) {
groupOrder = object.renderOrder;
if ( object.isClippingGroup && object.enabled ) clippingContext = clippingContext.getGroupContext( object );
} else if ( object.isLOD ) {
if ( object.autoUpdate === true ) object.update( camera );
} else if ( object.isLight ) {
renderList.pushLight( object );
} else if ( object.isSprite ) {
if ( ! object.frustumCulled || _frustum.intersectsSprite( object ) ) {
if ( this.sortObjects === true ) {
_vector4.setFromMatrixPosition( object.matrixWorld ).applyMatrix4( _projScreenMatrix );
}
const { geometry, material } = object;
if ( material.visible ) {
renderList.push( object, geometry, material, groupOrder, _vector4.z, null, clippingContext );
}
}
} else if ( object.isLineLoop ) {
console.error( 'THREE.Renderer: Objects of type THREE.LineLoop are not supported. Please use THREE.Line or THREE.LineSegments.' );
} else if ( object.isMesh || object.isLine || object.isPoints ) {
if ( ! object.frustumCulled || _frustum.intersectsObject( object ) ) {
const { geometry, material } = object;
if ( this.sortObjects === true ) {
if ( geometry.boundingSphere === null ) geometry.computeBoundingSphere();
_vector4
.copy( geometry.boundingSphere.center )
.applyMatrix4( object.matrixWorld )
.applyMatrix4( _projScreenMatrix );
}
if ( Array.isArray( material ) ) {
const groups = geometry.groups;
for ( let i = 0, l = groups.length; i < l; i ++ ) {
const group = groups[ i ];
const groupMaterial = material[ group.materialIndex ];
if ( groupMaterial && groupMaterial.visible ) {
renderList.push( object, geometry, groupMaterial, groupOrder, _vector4.z, group, clippingContext );
}
}
} else if ( material.visible ) {
renderList.push( object, geometry, material, groupOrder, _vector4.z, null, clippingContext );
}
}
}
}
if ( object.isBundleGroup === true && this.backend.beginBundle !== undefined ) {
const baseRenderList = renderList;
// replace render list
renderList = this._renderLists.get( object, camera );
renderList.begin();
baseRenderList.pushBundle( {
bundleGroup: object,
camera,
renderList,
} );
renderList.finish();
}
const children = object.children;
for ( let i = 0, l = children.length; i < l; i ++ ) {
this._projectObject( children[ i ], camera, groupOrder, renderList, clippingContext );
}
}
/**
* Renders the given render bundles.
*
* @private
* @param {Array<Object>} bundles - Array with render bundle data.
* @param {Scene} sceneRef - The scene the render bundles belong to.
* @param {LightsNode} lightsNode - The current lights node.
*/
_renderBundles( bundles, sceneRef, lightsNode ) {
for ( const bundle of bundles ) {
this._renderBundle( bundle, sceneRef, lightsNode );
}
}
/**
* Renders the transparent objects from the given render lists.
*
* @private
* @param {Array<Object>} renderList - The transparent render list.
* @param {Array<Object>} doublePassList - The list of transparent objects which require a double pass (e.g. because of transmission).
* @param {Camera} camera - The camera the render list should be rendered with.
* @param {Scene} scene - The scene the render list belongs to.
* @param {LightsNode} lightsNode - The current lights node.
*/
_renderTransparents( renderList, doublePassList, camera, scene, lightsNode ) {
if ( doublePassList.length > 0 ) {
// render back side
for ( const { material } of doublePassList ) {
material.side = BackSide;
}
this._renderObjects( doublePassList, camera, scene, lightsNode, 'backSide' );
// render front side
for ( const { material } of doublePassList ) {
material.side = FrontSide;
}
this._renderObjects( renderList, camera, scene, lightsNode );
// restore
for ( const { material } of doublePassList ) {
material.side = DoubleSide;
}
} else {
this._renderObjects( renderList, camera, scene, lightsNode );
}
}
/**
* Renders the objects from the given render list.
*
* @private
* @param {Array<Object>} renderList - The render list.
* @param {Camera} camera - The camera the render list should be rendered with.
* @param {Scene} scene - The scene the render list belongs to.
* @param {LightsNode} lightsNode - The current lights node.
* @param {String?} [passId=null] - An optional ID for identifying the pass.
*/
_renderObjects( renderList, camera, scene, lightsNode, passId = null ) {
for ( let i = 0, il = renderList.length; i < il; i ++ ) {
const { object, geometry, material, group, clippingContext } = renderList[ i ];
this._currentRenderObjectFunction( object, scene, camera, geometry, material, group, lightsNode, clippingContext, passId );
}
}
/**
* This method represents the default render object function that manages the render lifecycle
* of the object.
*
* @param {Object3D} object - The 3D object.
* @param {Scene} scene - The scene the 3D object belongs to.
* @param {Camera} camera - The camera the object should be rendered with.
* @param {BufferGeometry} geometry - The object's geometry.
* @param {Material} material - The object's material.
* @param {Object?} group - Only relevant for objects using multiple materials. This represents a group entry from the respective `BufferGeometry`.
* @param {LightsNode} lightsNode - The current lights node.
* @param {ClippingContext} clippingContext - The clipping context.
* @param {String?} [passId=null] - An optional ID for identifying the pass.
*/
renderObject( object, scene, camera, geometry, material, group, lightsNode, clippingContext = null, passId = null ) {
let overridePositionNode;
let overrideColorNode;
let overrideDepthNode;
//
object.onBeforeRender( this, scene, camera, geometry, material, group );
//
if ( scene.overrideMaterial !== null ) {
const overrideMaterial = scene.overrideMaterial;
if ( material.positionNode && material.positionNode.isNode ) {
overridePositionNode = overrideMaterial.positionNode;
overrideMaterial.positionNode = material.positionNode;
}
overrideMaterial.alphaTest = material.alphaTest;
overrideMaterial.alphaMap = material.alphaMap;
overrideMaterial.transparent = material.transparent || material.transmission > 0;
if ( overrideMaterial.isShadowPassMaterial ) {
overrideMaterial.side = material.shadowSide === null ? material.side : material.shadowSide;
if ( material.depthNode && material.depthNode.isNode ) {
overrideDepthNode = overrideMaterial.depthNode;
overrideMaterial.depthNode = material.depthNode;
}
if ( material.castShadowNode && material.castShadowNode.isNode ) {
overrideColorNode = overrideMaterial.colorNode;
overrideMaterial.colorNode = material.castShadowNode;
}
}
material = overrideMaterial;
}
//
if ( material.transparent === true && material.side === DoubleSide && material.forceSinglePass === false ) {
material.side = BackSide;
this._handleObjectFunction( object, material, scene, camera, lightsNode, group, clippingContext, 'backSide' ); // create backSide pass id
material.side = FrontSide;
this._handleObjectFunction( object, material, scene, camera, lightsNode, group, clippingContext, passId ); // use default pass id
material.side = DoubleSide;
} else {
this._handleObjectFunction( object, material, scene, camera, lightsNode, group, clippingContext, passId );
}
//
if ( overridePositionNode !== undefined ) {
scene.overrideMaterial.positionNode = overridePositionNode;
}
if ( overrideDepthNode !== undefined ) {
scene.overrideMaterial.depthNode = overrideDepthNode;
}
if ( overrideColorNode !== undefined ) {
scene.overrideMaterial.colorNode = overrideColorNode;
}
//
object.onAfterRender( this, scene, camera, geometry, material, group );
}
/**
* This method represents the default `_handleObjectFunction` implementation which creates
* a render object from the given data and performs the draw command with the selected backend.
*
* @private
* @param {Object3D} object - The 3D object.
* @param {Material} material - The object's material.
* @param {Scene} scene - The scene the 3D object belongs to.
* @param {Camera} camera - The camera the object should be rendered with.
* @param {LightsNode} lightsNode - The current lights node.
* @param {{start: Number, count: Number}?} group - Only relevant for objects using multiple materials. This represents a group entry from the respective `BufferGeometry`.
* @param {ClippingContext} clippingContext - The clipping context.
* @param {String?} [passId=null] - An optional ID for identifying the pass.
*/
_renderObjectDirect( object, material, scene, camera, lightsNode, group, clippingContext, passId ) {
const renderObject = this._objects.get( object, material, scene, camera, lightsNode, this._currentRenderContext, clippingContext, passId );
renderObject.drawRange = object.geometry.drawRange;
renderObject.group = group;
//
const needsRefresh = this._nodes.needsRefresh( renderObject );
if ( needsRefresh ) {
this._nodes.updateBefore( renderObject );
this._geometries.updateForRender( renderObject );
this._nodes.updateForRender( renderObject );
this._bindings.updateForRender( renderObject );
}
this._pipelines.updateForRender( renderObject );
//
if ( this._currentRenderBundle !== null ) {
const renderBundleData = this.backend.get( this._currentRenderBundle );
renderBundleData.renderObjects.push( renderObject );
renderObject.bundle = this._currentRenderBundle.bundleGroup;
}
this.backend.draw( renderObject, this.info );
if ( needsRefresh ) this._nodes.updateAfter( renderObject );
}
/**
* A different implementation for `_handleObjectFunction` which only makes sure the object is ready for rendering.
* Used in `compileAsync()`.
*
* @private
* @param {Object3D} object - The 3D object.
* @param {Material} material - The object's material.
* @param {Scene} scene - The scene the 3D object belongs to.
* @param {Camera} camera - The camera the object should be rendered with.
* @param {LightsNode} lightsNode - The current lights node.
* @param {{start: Number, count: Number}?} group - Only relevant for objects using multiple materials. This represents a group entry from the respective `BufferGeometry`.
* @param {ClippingContext} clippingContext - The clipping context.
* @param {String?} [passId=null] - An optional ID for identifying the pass.
*/
_createObjectPipeline( object, material, scene, camera, lightsNode, group, clippingContext, passId ) {
const renderObject = this._objects.get( object, material, scene, camera, lightsNode, this._currentRenderContext, clippingContext, passId );
renderObject.drawRange = object.geometry.drawRange;
renderObject.group = group;
//
this._nodes.updateBefore( renderObject );
this._geometries.updateForRender( renderObject );
this._nodes.updateForRender( renderObject );
this._bindings.updateForRender( renderObject );
this._pipelines.getForRender( renderObject, this._compilationPromises );
this._nodes.updateAfter( renderObject );
}
/**
* Alias for `compileAsync()`.
*
* @method
* @param {Object3D} scene - The scene or 3D object to precompile.
* @param {Camera} camera - The camera that is used to render the scene.
* @param {Scene} targetScene - If the first argument is a 3D object, this parameter must represent the scene the 3D object is going to be added.
* @return {Promise} A Promise that resolves when the compile has been finished.
*/
get compile() {
return this.compileAsync;
}
}
export default Renderer;