import { BackSide, LinearFilter, LinearMipmapLinearFilter, NoBlending } from '../constants.js';
import { Mesh } from '../objects/Mesh.js';
import { BoxGeometry } from '../geometries/BoxGeometry.js';
import { ShaderMaterial } from '../materials/ShaderMaterial.js';
import { cloneUniforms } from './shaders/UniformsUtils.js';
import { WebGLRenderTarget } from './WebGLRenderTarget.js';
import { CubeCamera } from '../cameras/CubeCamera.js';
import { CubeTexture } from '../textures/CubeTexture.js';
class WebGLCubeRenderTarget extends WebGLRenderTarget {
constructor( size = 1, options = {} ) {
super( size, size, options );
this.isWebGLCubeRenderTarget = true;
const image = { width: size, height: size, depth: 1 };
const images = [ image, image, image, image, image, image ];
this.texture = new CubeTexture( images, options.mapping, options.wrapS, options.wrapT, options.magFilter, options.minFilter, options.format, options.type, options.anisotropy, options.colorSpace );
// By convention -- likely based on the RenderMan spec from the 1990's -- cube maps are specified by WebGL (and three.js)
// in a coordinate system in which positive-x is to the right when looking up the positive-z axis -- in other words,
// in a left-handed coordinate system. By continuing this convention, preexisting cube maps continued to render correctly.
// three.js uses a right-handed coordinate system. So environment maps used in three.js appear to have px and nx swapped
// and the flag isRenderTargetTexture controls this conversion. The flip is not required when using WebGLCubeRenderTarget.texture
// as a cube texture (this is detected when isRenderTargetTexture is set to true for cube textures).
this.texture.isRenderTargetTexture = true;
this.texture.generateMipmaps = options.generateMipmaps !== undefined ? options.generateMipmaps : false;
this.texture.minFilter = options.minFilter !== undefined ? options.minFilter : LinearFilter;
}
fromEquirectangularTexture( renderer, texture ) {
this.texture.type = texture.type;
this.texture.colorSpace = texture.colorSpace;
this.texture.generateMipmaps = texture.generateMipmaps;
this.texture.minFilter = texture.minFilter;
this.texture.magFilter = texture.magFilter;
const shader = {
uniforms: {
tEquirect: { value: null },
},
vertexShader: /* glsl */`
varying vec3 vWorldDirection;
vec3 transformDirection( in vec3 dir, in mat4 matrix ) {
return normalize( ( matrix * vec4( dir, 0.0 ) ).xyz );
}
void main() {
vWorldDirection = transformDirection( position, modelMatrix );
#include <begin_vertex>
#include <project_vertex>
}
`,
fragmentShader: /* glsl */`
uniform sampler2D tEquirect;
varying vec3 vWorldDirection;
#include <common>
void main() {
vec3 direction = normalize( vWorldDirection );
vec2 sampleUV = equirectUv( direction );
gl_FragColor = texture2D( tEquirect, sampleUV );
}
`
};
const geometry = new BoxGeometry( 5, 5, 5 );
const material = new ShaderMaterial( {
name: 'CubemapFromEquirect',
uniforms: cloneUniforms( shader.uniforms ),
vertexShader: shader.vertexShader,
fragmentShader: shader.fragmentShader,
side: BackSide,
blending: NoBlending
} );
material.uniforms.tEquirect.value = texture;
const mesh = new Mesh( geometry, material );
const currentMinFilter = texture.minFilter;
// Avoid blurred poles
if ( texture.minFilter === LinearMipmapLinearFilter ) texture.minFilter = LinearFilter;
const camera = new CubeCamera( 1, 10, this );
camera.update( renderer, mesh );
texture.minFilter = currentMinFilter;
mesh.geometry.dispose();
mesh.material.dispose();
return this;
}
clear( renderer, color, depth, stencil ) {
const currentRenderTarget = renderer.getRenderTarget();
for ( let i = 0; i < 6; i ++ ) {
renderer.setRenderTarget( this, i );
renderer.clear( color, depth, stencil );
}
renderer.setRenderTarget( currentRenderTarget );
}
}
export { WebGLCubeRenderTarget };