import { Matrix3 } from './Matrix3.js';
import { Vector3 } from './Vector3.js';
const _vector1 = /*@__PURE__*/ new Vector3();
const _vector2 = /*@__PURE__*/ new Vector3();
const _normalMatrix = /*@__PURE__*/ new Matrix3();
class Plane {
constructor( normal = new Vector3( 1, 0, 0 ), constant = 0 ) {
this.isPlane = true;
// normal is assumed to be normalized
this.normal = normal;
this.constant = constant;
}
set( normal, constant ) {
this.normal.copy( normal );
this.constant = constant;
return this;
}
setComponents( x, y, z, w ) {
this.normal.set( x, y, z );
this.constant = w;
return this;
}
setFromNormalAndCoplanarPoint( normal, point ) {
this.normal.copy( normal );
this.constant = - point.dot( this.normal );
return this;
}
setFromCoplanarPoints( a, b, c ) {
const normal = _vector1.subVectors( c, b ).cross( _vector2.subVectors( a, b ) ).normalize();
// Q: should an error be thrown if normal is zero (e.g. degenerate plane)?
this.setFromNormalAndCoplanarPoint( normal, a );
return this;
}
copy( plane ) {
this.normal.copy( plane.normal );
this.constant = plane.constant;
return this;
}
normalize() {
// Note: will lead to a divide by zero if the plane is invalid.
const inverseNormalLength = 1.0 / this.normal.length();
this.normal.multiplyScalar( inverseNormalLength );
this.constant *= inverseNormalLength;
return this;
}
negate() {
this.constant *= - 1;
this.normal.negate();
return this;
}
distanceToPoint( point ) {
return this.normal.dot( point ) + this.constant;
}
distanceToSphere( sphere ) {
return this.distanceToPoint( sphere.center ) - sphere.radius;
}
projectPoint( point, target ) {
return target.copy( point ).addScaledVector( this.normal, - this.distanceToPoint( point ) );
}
intersectLine( line, target ) {
const direction = line.delta( _vector1 );
const denominator = this.normal.dot( direction );
if ( denominator === 0 ) {
// line is coplanar, return origin
if ( this.distanceToPoint( line.start ) === 0 ) {
return target.copy( line.start );
}
// Unsure if this is the correct method to handle this case.
return null;
}
const t = - ( line.start.dot( this.normal ) + this.constant ) / denominator;
if ( t < 0 || t > 1 ) {
return null;
}
return target.copy( line.start ).addScaledVector( direction, t );
}
intersectsLine( line ) {
// Note: this tests if a line intersects the plane, not whether it (or its end-points) are coplanar with it.
const startSign = this.distanceToPoint( line.start );
const endSign = this.distanceToPoint( line.end );
return ( startSign < 0 && endSign > 0 ) || ( endSign < 0 && startSign > 0 );
}
intersectsBox( box ) {
return box.intersectsPlane( this );
}
intersectsSphere( sphere ) {
return sphere.intersectsPlane( this );
}
coplanarPoint( target ) {
return target.copy( this.normal ).multiplyScalar( - this.constant );
}
applyMatrix4( matrix, optionalNormalMatrix ) {
const normalMatrix = optionalNormalMatrix || _normalMatrix.getNormalMatrix( matrix );
const referencePoint = this.coplanarPoint( _vector1 ).applyMatrix4( matrix );
const normal = this.normal.applyMatrix3( normalMatrix ).normalize();
this.constant = - referencePoint.dot( normal );
return this;
}
translate( offset ) {
this.constant -= offset.dot( this.normal );
return this;
}
equals( plane ) {
return plane.normal.equals( this.normal ) && ( plane.constant === this.constant );
}
clone() {
return new this.constructor().copy( this );
}
}
export { Plane };