MCP 3D Printer Server
by DMontgomery40
Verified
- node_modules
- three
- examples
- jsm
- tsl
- lighting
import { DataTexture, FloatType, RGBAFormat, Vector2, Vector3, LightsNode, NodeUpdateType } from 'three/webgpu';
import {
attributeArray, nodeProxy, int, float, vec2, ivec2, ivec4, uniform, Break, Loop,
Fn, If, Return, textureLoad, instanceIndex, screenCoordinate, directPointLight
} from 'three/tsl';
export const circleIntersectsAABB = /*@__PURE__*/ Fn( ( [ circleCenter, radius, minBounds, maxBounds ] ) => {
// Find the closest point on the AABB to the circle's center using method chaining
const closestX = minBounds.x.max( circleCenter.x.min( maxBounds.x ) );
const closestY = minBounds.y.max( circleCenter.y.min( maxBounds.y ) );
// Compute the distance between the circle's center and the closest point
const distX = circleCenter.x.sub( closestX );
const distY = circleCenter.y.sub( closestY );
// Calculate the squared distance
const distSquared = distX.mul( distX ).add( distY.mul( distY ) );
return distSquared.lessThanEqual( radius.mul( radius ) );
} ).setLayout( {
name: 'circleIntersectsAABB',
type: 'bool',
inputs: [
{ name: 'circleCenter', type: 'vec2' },
{ name: 'radius', type: 'float' },
{ name: 'minBounds', type: 'vec2' },
{ name: 'maxBounds', type: 'vec2' }
]
} );
const _vector3 = /*@__PURE__*/ new Vector3();
const _size = /*@__PURE__*/ new Vector2();
class TiledLightsNode extends LightsNode {
static get type() {
return 'TiledLightsNode';
}
constructor( maxLights = 1024, tileSize = 32 ) {
super();
this.materialLights = [];
this.tiledLights = [];
this.maxLights = maxLights;
this.tileSize = tileSize;
this._bufferSize = null;
this._lightIndexes = null;
this._screenTileIndex = null;
this._compute = null;
this._lightsTexture = null;
this._lightsCount = uniform( 0, 'int' );
this._tileLightCount = 8;
this._screenSize = uniform( new Vector2() );
this._cameraProjectionMatrix = uniform( 'mat4' );
this._cameraViewMatrix = uniform( 'mat4' );
this.updateBeforeType = NodeUpdateType.RENDER;
}
customCacheKey() {
return this._compute.getCacheKey() + super.customCacheKey();
}
updateLightsTexture() {
const { _lightsTexture: lightsTexture, tiledLights } = this;
const data = lightsTexture.image.data;
const lineSize = lightsTexture.image.width * 4;
this._lightsCount.value = tiledLights.length;
for ( let i = 0; i < tiledLights.length; i ++ ) {
const light = tiledLights[ i ];
// world position
_vector3.setFromMatrixPosition( light.matrixWorld );
// store data
const offset = i * 4;
data[ offset + 0 ] = _vector3.x;
data[ offset + 1 ] = _vector3.y;
data[ offset + 2 ] = _vector3.z;
data[ offset + 3 ] = light.distance;
data[ lineSize + offset + 0 ] = light.color.r * light.intensity;
data[ lineSize + offset + 1 ] = light.color.g * light.intensity;
data[ lineSize + offset + 2 ] = light.color.b * light.intensity;
data[ lineSize + offset + 3 ] = light.decay;
}
lightsTexture.needsUpdate = true;
}
updateBefore( frame ) {
const { renderer, camera } = frame;
this.updateProgram( renderer );
this.updateLightsTexture( camera );
this._cameraProjectionMatrix.value = camera.projectionMatrix;
this._cameraViewMatrix.value = camera.matrixWorldInverse;
renderer.getDrawingBufferSize( _size );
this._screenSize.value.copy( _size );
renderer.compute( this._compute );
}
setLights( lights ) {
const { tiledLights, materialLights } = this;
let materialindex = 0;
let tiledIndex = 0;
for ( const light of lights ) {
if ( light.isPointLight === true ) {
tiledLights[ tiledIndex ++ ] = light;
} else {
materialLights[ materialindex ++ ] = light;
}
}
materialLights.length = materialindex;
tiledLights.length = tiledIndex;
return super.setLights( materialLights );
}
getBlock( block = 0 ) {
return this._lightIndexes.element( this._screenTileIndex.mul( int( 2 ).add( int( block ) ) ) );
}
getTile( element ) {
element = int( element );
const stride = int( 4 );
const tileOffset = element.div( stride );
const tileIndex = this._screenTileIndex.mul( int( 2 ) ).add( tileOffset );
return this._lightIndexes.element( tileIndex ).element( element.modInt( stride ) );
}
getLightData( index ) {
index = int( index );
const dataA = textureLoad( this._lightsTexture, ivec2( index, 0 ) );
const dataB = textureLoad( this._lightsTexture, ivec2( index, 1 ) );
const position = dataA.xyz;
const viewPosition = this._cameraViewMatrix.mul( position );
const distance = dataA.w;
const color = dataB.rgb;
const decay = dataB.w;
return {
position,
viewPosition,
distance,
color,
decay
};
}
setupLights( builder, lightNodes ) {
this.updateProgram( builder.renderer );
//
const lightingModel = builder.context.reflectedLight;
// force declaration order, before of the loop
lightingModel.directDiffuse.append();
lightingModel.directSpecular.append();
super.setupLights( builder, lightNodes );
Fn( () => {
Loop( this._tileLightCount, ( { i } ) => {
const lightIndex = this.getTile( i );
If( lightIndex.equal( int( 0 ) ), () => {
Break();
} );
const { color, decay, viewPosition, distance } = this.getLightData( lightIndex.sub( 1 ) );
directPointLight( {
color,
lightViewPosition: viewPosition,
cutoffDistance: distance,
decayExponent: decay
} ).append();
} );
} )().append();
}
getBufferFitSize( value ) {
const multiple = this.tileSize;
return Math.ceil( value / multiple ) * multiple;
}
setSize( width, height ) {
width = this.getBufferFitSize( width );
height = this.getBufferFitSize( height );
if ( ! this._bufferSize || this._bufferSize.width !== width || this._bufferSize.height !== height ) {
this.create( width, height );
}
return this;
}
updateProgram( renderer ) {
renderer.getDrawingBufferSize( _size );
const width = this.getBufferFitSize( _size.width );
const height = this.getBufferFitSize( _size.height );
if ( this._bufferSize === null ) {
this.create( width, height );
} else if ( this._bufferSize.width !== width || this._bufferSize.height !== height ) {
this.create( width, height );
}
}
create( width, height ) {
const { tileSize, maxLights } = this;
const bufferSize = new Vector2( width, height );
const lineSize = Math.floor( bufferSize.width / tileSize );
const count = Math.floor( ( bufferSize.width * bufferSize.height ) / tileSize );
// buffers
const lightsData = new Float32Array( maxLights * 4 * 2 ); // 2048 lights, 4 elements(rgba), 2 components, 1 component per line (position, distance, color, decay)
const lightsTexture = new DataTexture( lightsData, lightsData.length / 8, 2, RGBAFormat, FloatType );
const lightIndexesArray = new Int32Array( count * 4 * 2 );
const lightIndexes = attributeArray( lightIndexesArray, 'ivec4' ).label( 'lightIndexes' );
// compute
const getBlock = ( index ) => {
const tileIndex = instanceIndex.mul( int( 2 ) ).add( int( index ) );
return lightIndexes.element( tileIndex );
};
const getTile = ( elementIndex ) => {
elementIndex = int( elementIndex );
const stride = int( 4 );
const tileOffset = elementIndex.div( stride );
const tileIndex = instanceIndex.mul( int( 2 ) ).add( tileOffset );
return lightIndexes.element( tileIndex ).element( elementIndex.modInt( stride ) );
};
const compute = Fn( () => {
const { _cameraProjectionMatrix: cameraProjectionMatrix, _bufferSize: bufferSize, _screenSize: screenSize } = this;
const tiledBufferSize = bufferSize.clone().divideScalar( tileSize ).floor();
const tileScreen = vec2(
instanceIndex.modInt( tiledBufferSize.width ),
instanceIndex.div( tiledBufferSize.width )
).mul( tileSize ).div( screenSize );
const blockSize = float( tileSize ).div( screenSize );
const minBounds = tileScreen;
const maxBounds = minBounds.add( blockSize );
const index = int( 0 ).toVar();
getBlock( 0 ).assign( ivec4( 0 ) );
getBlock( 1 ).assign( ivec4( 0 ) );
Loop( this.maxLights, ( { i } ) => {
If( index.greaterThanEqual( this._tileLightCount ).or( int( i ).greaterThanEqual( int( this._lightsCount ) ) ), () => {
Return();
} );
const { viewPosition, distance } = this.getLightData( i );
const projectedPosition = cameraProjectionMatrix.mul( viewPosition );
const ndc = projectedPosition.div( projectedPosition.w );
const screenPosition = ndc.xy.mul( 0.5 ).add( 0.5 ).flipY();
const distanceFromCamera = viewPosition.z;
const pointRadius = distance.div( distanceFromCamera );
If( circleIntersectsAABB( screenPosition, pointRadius, minBounds, maxBounds ), () => {
getTile( index ).assign( i.add( int( 1 ) ) );
index.addAssign( int( 1 ) );
} );
} );
} )().compute( count );
// screen coordinate lighting indexes
const screenTile = screenCoordinate.div( tileSize ).floor().toVar();
const screenTileIndex = screenTile.x.add( screenTile.y.mul( lineSize ) );
// assigns
this._bufferSize = bufferSize;
this._lightIndexes = lightIndexes;
this._screenTileIndex = screenTileIndex;
this._compute = compute;
this._lightsTexture = lightsTexture;
}
get hasLights() {
return super.hasLights || this.tiledLights.length > 0;
}
}
export default TiledLightsNode;
export const tiledLights = /*@__PURE__*/ nodeProxy( TiledLightsNode );