MCP 3D Printer Server

by DMontgomery40
Verified
import { AdditiveBlending, Color, Vector2, RendererUtils, PassNode, QuadMesh, NodeMaterial } from 'three/webgpu'; import { nodeObject, uniform, mrt, texture, getTextureIndex } from 'three/tsl'; /** @module SSAAPassNode **/ const _size = /*@__PURE__*/ new Vector2(); let _rendererState; /** * A special render pass node that renders the scene with SSAA (Supersampling Anti-Aliasing). * This manual SSAA approach re-renders the scene ones for each sample with camera jitter and accumulates the results. * * This node produces a high-quality anti-aliased output but is also extremely expensive because of * its brute-force approach of re-rendering the entire scene multiple times. * * Reference: {@link https://en.wikipedia.org/wiki/Supersampling} * * @augments PassNode */ class SSAAPassNode extends PassNode { static get type() { return 'SSAAPassNode'; } /** * Constructs a new SSAA pass node. * * @param {Scene} scene - The scene to render. * @param {Camera} camera - The camera to render the scene with. */ constructor( scene, camera ) { super( PassNode.COLOR, scene, camera ); /** * This flag can be used for type testing. * * @type {Boolean} * @readonly * @default true */ this.isSSAAPassNode = true; /** * The sample level specified as n, where the number of samples is 2^n, * so sampleLevel = 4, is 2^4 samples, 16. * * @type {Number} * @default 4 */ this.sampleLevel = 4; /** * Whether rounding errors should be mitigated or not. * * @type {Boolean} * @default true */ this.unbiased = true; /** * The clear color of the pass. * * @type {Color} * @default 0x000000 */ this.clearColor = new Color( 0x000000 ); /** * The clear alpha of the pass. * * @type {Number} * @default 0 */ this.clearAlpha = 0; /** * A uniform node representing the sample weight. * * @type {UniformNode<float>} * @default 1 */ this.sampleWeight = uniform( 1 ); /** * Reference to the internal render target that holds the current sample. * * @private * @type {RenderTarget?} */ this._sampleRenderTarget = null; /** * Reference to the internal quad mesh. * * @private * @type {QuadMesh} */ this._quadMesh = new QuadMesh(); } /** * This method is used to render the SSAA effect once per frame. * * @param {NodeFrame} frame - The current node frame. */ updateBefore( frame ) { const { renderer } = frame; const { scene, camera } = this; _rendererState = RendererUtils.resetRendererAndSceneState( renderer, scene, _rendererState ); // this._pixelRatio = renderer.getPixelRatio(); const size = renderer.getSize( _size ); this.setSize( size.width, size.height ); this._sampleRenderTarget.setSize( this.renderTarget.width, this.renderTarget.height ); // this._cameraNear.value = camera.near; this._cameraFar.value = camera.far; renderer.setMRT( this.getMRT() ); renderer.autoClear = false; const jitterOffsets = _JitterVectors[ Math.max( 0, Math.min( this.sampleLevel, 5 ) ) ]; const baseSampleWeight = 1.0 / jitterOffsets.length; const roundingRange = 1 / 32; const viewOffset = { fullWidth: this.renderTarget.width, fullHeight: this.renderTarget.height, offsetX: 0, offsetY: 0, width: this.renderTarget.width, height: this.renderTarget.height }; const originalViewOffset = Object.assign( {}, camera.view ); if ( originalViewOffset.enabled ) Object.assign( viewOffset, originalViewOffset ); // render the scene multiple times, each slightly jitter offset from the last and accumulate the results. for ( let i = 0; i < jitterOffsets.length; i ++ ) { const jitterOffset = jitterOffsets[ i ]; if ( camera.setViewOffset ) { camera.setViewOffset( viewOffset.fullWidth, viewOffset.fullHeight, viewOffset.offsetX + jitterOffset[ 0 ] * 0.0625, viewOffset.offsetY + jitterOffset[ 1 ] * 0.0625, // 0.0625 = 1 / 16 viewOffset.width, viewOffset.height ); } this.sampleWeight.value = baseSampleWeight; if ( this.unbiased ) { // the theory is that equal weights for each sample lead to an accumulation of rounding errors. // The following equation varies the sampleWeight per sample so that it is uniformly distributed // across a range of values whose rounding errors cancel each other out. const uniformCenteredDistribution = ( - 0.5 + ( i + 0.5 ) / jitterOffsets.length ); this.sampleWeight.value += roundingRange * uniformCenteredDistribution; } renderer.setClearColor( this.clearColor, this.clearAlpha ); renderer.setRenderTarget( this._sampleRenderTarget ); renderer.clear(); renderer.render( scene, camera ); // accumulation renderer.setRenderTarget( this.renderTarget ); if ( i === 0 ) { renderer.setClearColor( 0x000000, 0.0 ); renderer.clear(); } this._quadMesh.render( renderer ); } renderer.copyTextureToTexture( this._sampleRenderTarget.depthTexture, this.renderTarget.depthTexture ); // restore if ( camera.setViewOffset && originalViewOffset.enabled ) { camera.setViewOffset( originalViewOffset.fullWidth, originalViewOffset.fullHeight, originalViewOffset.offsetX, originalViewOffset.offsetY, originalViewOffset.width, originalViewOffset.height ); } else if ( camera.clearViewOffset ) { camera.clearViewOffset(); } // RendererUtils.restoreRendererAndSceneState( renderer, scene, _rendererState ); } /** * This method is used to setup the effect's MRT configuration and quad mesh. * * @param {NodeBuilder} builder - The current node builder. * @return {PassTextureNode} */ setup( builder ) { if ( this._sampleRenderTarget === null ) { this._sampleRenderTarget = this.renderTarget.clone(); } let sampleTexture; const passMRT = this.getMRT(); if ( passMRT !== null ) { const outputs = {}; for ( const name in passMRT.outputNodes ) { const index = getTextureIndex( this._sampleRenderTarget.textures, name ); if ( index >= 0 ) { outputs[ name ] = texture( this._sampleRenderTarget.textures[ index ] ).mul( this.sampleWeight ); } } sampleTexture = mrt( outputs ); } else { sampleTexture = texture( this._sampleRenderTarget.texture ).mul( this.sampleWeight ); } this._quadMesh.material = new NodeMaterial(); this._quadMesh.material.fragmentNode = sampleTexture; this._quadMesh.material.transparent = true; this._quadMesh.material.depthTest = false; this._quadMesh.material.depthWrite = false; this._quadMesh.material.premultipliedAlpha = true; this._quadMesh.material.blending = AdditiveBlending; this._quadMesh.material.name = 'SSAA'; return super.setup( builder ); } /** * Frees internal resources. This method should be called * when the pass is no longer required. */ dispose() { super.dispose(); if ( this._sampleRenderTarget !== null ) { this._sampleRenderTarget.dispose(); } } } export default SSAAPassNode; // These jitter vectors are specified in integers because it is easier. // I am assuming a [-8,8) integer grid, but it needs to be mapped onto [-0.5,0.5) // before being used, thus these integers need to be scaled by 1/16. // // Sample patterns reference: https://msdn.microsoft.com/en-us/library/windows/desktop/ff476218%28v=vs.85%29.aspx?f=255&MSPPError=-2147217396 const _JitterVectors = [ [ [ 0, 0 ] ], [ [ 4, 4 ], [ - 4, - 4 ] ], [ [ - 2, - 6 ], [ 6, - 2 ], [ - 6, 2 ], [ 2, 6 ] ], [ [ 1, - 3 ], [ - 1, 3 ], [ 5, 1 ], [ - 3, - 5 ], [ - 5, 5 ], [ - 7, - 1 ], [ 3, 7 ], [ 7, - 7 ] ], [ [ 1, 1 ], [ - 1, - 3 ], [ - 3, 2 ], [ 4, - 1 ], [ - 5, - 2 ], [ 2, 5 ], [ 5, 3 ], [ 3, - 5 ], [ - 2, 6 ], [ 0, - 7 ], [ - 4, - 6 ], [ - 6, 4 ], [ - 8, 0 ], [ 7, - 4 ], [ 6, 7 ], [ - 7, - 8 ] ], [ [ - 4, - 7 ], [ - 7, - 5 ], [ - 3, - 5 ], [ - 5, - 4 ], [ - 1, - 4 ], [ - 2, - 2 ], [ - 6, - 1 ], [ - 4, 0 ], [ - 7, 1 ], [ - 1, 2 ], [ - 6, 3 ], [ - 3, 3 ], [ - 7, 6 ], [ - 3, 6 ], [ - 5, 7 ], [ - 1, 7 ], [ 5, - 7 ], [ 1, - 6 ], [ 6, - 5 ], [ 4, - 4 ], [ 2, - 3 ], [ 7, - 2 ], [ 1, - 1 ], [ 4, - 1 ], [ 2, 1 ], [ 6, 2 ], [ 0, 4 ], [ 4, 4 ], [ 2, 5 ], [ 7, 5 ], [ 5, 6 ], [ 3, 7 ] ] ]; /** * TSL function for creating a SSAA pass node for Supersampling Anti-Aliasing. * * @function * @param {Scene} scene - The scene to render. * @param {Camera} camera - The camera to render the scene with. * @returns {SSAAPassNode} */ export const ssaaPass = ( scene, camera ) => nodeObject( new SSAAPassNode( scene, camera ) );