MCP 3D Printer Server
by DMontgomery40
Verified
- node_modules
- three
- examples
- jsm
- objects
import {
AdditiveBlending,
Box2,
BufferGeometry,
Color,
FramebufferTexture,
InterleavedBuffer,
InterleavedBufferAttribute,
Mesh,
MeshBasicNodeMaterial,
NodeMaterial,
UnsignedByteType,
Vector2,
Vector3,
Vector4,
Node
} from 'three/webgpu';
import { texture, textureLoad, uv, ivec2, vec2, vec4, positionGeometry, reference, varyingProperty, materialReference, Fn } from 'three/tsl';
class LensflareMesh extends Mesh {
constructor() {
super( LensflareMesh.Geometry, new MeshBasicNodeMaterial( { opacity: 0, transparent: true } ) );
this.isLensflare = true;
this.type = 'LensflareMesh';
this.frustumCulled = false;
this.renderOrder = Infinity;
//
const positionView = new Vector3();
// textures
const tempMap = new FramebufferTexture( 16, 16 );
const occlusionMap = new FramebufferTexture( 16, 16 );
let currentType = UnsignedByteType;
const geometry = LensflareMesh.Geometry;
// values for shared material uniforms
const sharedValues = {
scale: new Vector2(),
positionScreen: new Vector3()
};
// materials
const scale = reference( 'scale', 'vec2', sharedValues );
const screenPosition = reference( 'positionScreen', 'vec3', sharedValues );
const vertexNode = vec4( positionGeometry.xy.mul( scale ).add( screenPosition.xy ), screenPosition.z, 1.0 );
const material1a = new NodeMaterial();
material1a.depthTest = true;
material1a.depthWrite = false;
material1a.transparent = false;
material1a.fog = false;
material1a.type = 'Lensflare-1a';
material1a.vertexNode = vertexNode;
material1a.fragmentNode = vec4( 1.0, 0.0, 1.0, 1.0 );
const material1b = new NodeMaterial();
material1b.depthTest = false;
material1b.depthWrite = false;
material1b.transparent = false;
material1b.fog = false;
material1b.type = 'Lensflare-1b';
material1b.vertexNode = vertexNode;
material1b.fragmentNode = texture( tempMap, vec2( uv().flipY() ) );
// the following object is used for occlusionMap generation
const mesh1 = new Mesh( geometry, material1a );
//
const elements = [];
const elementMeshes = [];
const material2 = new NodeMaterial();
material2.transparent = true;
material2.blending = AdditiveBlending;
material2.depthWrite = false;
material2.depthTest = false;
material2.fog = false;
material2.type = 'Lensflare-2';
material2.screenPosition = new Vector3();
material2.scale = new Vector2();
material2.occlusionMap = occlusionMap;
material2.vertexNode = Fn( ( { material } ) => {
const scale = materialReference( 'scale', 'vec2' );
const screenPosition = materialReference( 'screenPosition', 'vec3' );
const occlusionMap = material.occlusionMap;
const pos = positionGeometry.xy.toVar();
const visibility = textureLoad( occlusionMap, ivec2( 2, 2 ) ).toVar();
visibility.addAssign( textureLoad( occlusionMap, ivec2( 8, 2 ) ) );
visibility.addAssign( textureLoad( occlusionMap, ivec2( 14, 2 ) ) );
visibility.addAssign( textureLoad( occlusionMap, ivec2( 14, 8 ) ) );
visibility.addAssign( textureLoad( occlusionMap, ivec2( 14, 14 ) ) );
visibility.addAssign( textureLoad( occlusionMap, ivec2( 8, 14 ) ) );
visibility.addAssign( textureLoad( occlusionMap, ivec2( 2, 14 ) ) );
visibility.addAssign( textureLoad( occlusionMap, ivec2( 2, 8 ) ) );
visibility.addAssign( textureLoad( occlusionMap, ivec2( 8, 8 ) ) );
const vVisibility = varyingProperty( 'float', 'vVisibility' );
vVisibility.assign( visibility.r.div( 9.0 ) );
vVisibility.mulAssign( visibility.g.div( 9.0 ).oneMinus() );
vVisibility.mulAssign( visibility.b.div( 9.0 ) );
return vec4( ( pos.mul( scale ).add( screenPosition.xy ).xy ), screenPosition.z, 1.0 );
} )();
material2.fragmentNode = Fn( () => {
const color = reference( 'color', 'color' );
const map = reference( 'map', 'texture' );
const vVisibility = varyingProperty( 'float', 'vVisibility' );
const output = map.toVar();
output.a.mulAssign( vVisibility );
output.rgb.mulAssign( color );
return output;
} )();
this.addElement = function ( element ) {
elements.push( element );
};
//
const positionScreen = sharedValues.positionScreen;
const screenPositionPixels = new Vector4( 0, 0, 16, 16 );
const validArea = new Box2();
const viewport = new Vector4();
// dummy node for renderer.renderObject()
const lightsNode = new Node();
this.onBeforeRender = ( renderer, scene, camera ) => {
renderer.getViewport( viewport );
viewport.multiplyScalar( window.devicePixelRatio );
const renderTarget = renderer.getRenderTarget();
const type = ( renderTarget !== null ) ? renderTarget.texture.type : UnsignedByteType;
if ( currentType !== type ) {
tempMap.dispose();
occlusionMap.dispose();
tempMap.type = occlusionMap.type = type;
currentType = type;
}
const invAspect = viewport.w / viewport.z;
const halfViewportWidth = viewport.z / 2.0;
const halfViewportHeight = viewport.w / 2.0;
const size = 16 / viewport.w;
sharedValues.scale.set( size * invAspect, size );
validArea.min.set( viewport.x, viewport.y );
validArea.max.set( viewport.x + ( viewport.z - 16 ), viewport.y + ( viewport.w - 16 ) );
// calculate position in screen space
positionView.setFromMatrixPosition( this.matrixWorld );
positionView.applyMatrix4( camera.matrixWorldInverse );
if ( positionView.z > 0 ) return; // lensflare is behind the camera
positionScreen.copy( positionView ).applyMatrix4( camera.projectionMatrix );
// horizontal and vertical coordinate of the lower left corner of the pixels to copy
screenPositionPixels.x = viewport.x + ( positionScreen.x * halfViewportWidth ) + halfViewportWidth - 8;
screenPositionPixels.y = viewport.y - ( positionScreen.y * halfViewportHeight ) + halfViewportHeight - 8;
// screen cull
if ( validArea.containsPoint( screenPositionPixels ) ) {
// save current RGB to temp texture
renderer.copyFramebufferToTexture( tempMap, screenPositionPixels );
// render pink quad
renderer.renderObject( mesh1, scene, camera, geometry, material1a, null, lightsNode );
// copy result to occlusionMap
renderer.copyFramebufferToTexture( occlusionMap, screenPositionPixels );
// restore graphics
renderer.renderObject( mesh1, scene, camera, geometry, material1b, null, lightsNode );
// render elements
const vecX = - positionScreen.x * 2;
const vecY = - positionScreen.y * 2;
for ( let i = 0, l = elements.length; i < l; i ++ ) {
const element = elements[ i ];
let mesh2 = elementMeshes[ i ];
if ( mesh2 === undefined ) {
mesh2 = elementMeshes[ i ] = new Mesh( geometry, material2 );
mesh2.color = element.color.convertSRGBToLinear();
mesh2.map = element.texture;
}
material2.screenPosition.x = positionScreen.x + vecX * element.distance;
material2.screenPosition.y = positionScreen.y - vecY * element.distance;
material2.screenPosition.z = positionScreen.z;
const size = element.size / viewport.w;
material2.scale.set( size * invAspect, size );
renderer.renderObject( mesh2, scene, camera, geometry, material2, null, lightsNode );
}
}
};
this.dispose = function () {
material1a.dispose();
material1b.dispose();
material2.dispose();
tempMap.dispose();
occlusionMap.dispose();
for ( let i = 0, l = elements.length; i < l; i ++ ) {
elements[ i ].texture.dispose();
}
};
}
}
//
class LensflareElement {
constructor( texture, size = 1, distance = 0, color = new Color( 0xffffff ) ) {
this.texture = texture;
this.size = size;
this.distance = distance;
this.color = color;
}
}
LensflareMesh.Geometry = ( function () {
const geometry = new BufferGeometry();
const float32Array = new Float32Array( [
- 1, - 1, 0, 0, 0,
1, - 1, 0, 1, 0,
1, 1, 0, 1, 1,
- 1, 1, 0, 0, 1
] );
const interleavedBuffer = new InterleavedBuffer( float32Array, 5 );
geometry.setIndex( [ 0, 1, 2, 0, 2, 3 ] );
geometry.setAttribute( 'position', new InterleavedBufferAttribute( interleavedBuffer, 3, 0, false ) );
geometry.setAttribute( 'uv', new InterleavedBufferAttribute( interleavedBuffer, 2, 3, false ) );
return geometry;
} )();
export { LensflareMesh, LensflareElement };