MCP Chat Analysis Server

MCP Chat Analysis Server

A Model Context Protocol (MCP) server that enables semantic analysis of chat conversations through vector embeddings and knowledge graphs. This server provides tools for analyzing chat data, performing semantic search, extracting concepts, and analyzing conversation patterns.

Key Features

  • πŸ” Semantic Search: Find relevant messages and conversations using vector similarity
  • πŸ•ΈοΈ Knowledge Graph: Navigate relationships between messages, concepts, and topics
  • πŸ“Š Conversation Analytics: Analyze patterns, metrics, and conversation dynamics
  • πŸ”„ Flexible Import: Support for various chat export formats
  • πŸš€ MCP Integration: Easy integration with Claude and other MCP-compatible systems

Quick Start

# Install the package pip install mcp-chat-analysis-server # Set up configuration cp config.example.yml config.yml # Edit config.yml with your database settings # Run the server python -m mcp_chat_analysis.server

MCP Integration

Add to your claude_desktop_config.json:

{ "mcpServers": { "chat-analysis": { "command": "python", "args": ["-m", "mcp_chat_analysis.server"], "env": { "QDRANT_URL": "http://localhost:6333", "NEO4J_URL": "bolt://localhost:7687", "NEO4J_USER": "neo4j", "NEO4J_PASSWORD": "your-password" } } } }

Available Tools

import_conversations

Import and analyze chat conversations

{ "source_path": "/path/to/export.zip", "format": "openai_native" # or html, markdown, json }

Search conversations by semantic similarity

{ "query": "machine learning applications", "limit": 10, "min_score": 0.7 }

analyze_metrics

Analyze conversation metrics

{ "conversation_id": "conv-123", "metrics": [ "message_frequency", "response_times", "topic_diversity" ] }

extract_concepts

Extract and analyze concepts

{ "conversation_id": "conv-123", "min_relevance": 0.5, "max_concepts": 10 }

Architecture

See ARCHITECTURE.md for detailed diagrams and documentation of:

  • System components and interactions
  • Data flow and processing pipeline
  • Storage schema and vector operations
  • Tool integration mechanism

Prerequisites

  • Python 3.8+
  • Neo4j database for knowledge graph storage
  • Qdrant vector database for semantic search
  • sentence-transformers for embeddings

Installation

  1. Install the package:
pip install mcp-chat-analysis-server
  1. Set up databases:
# Using Docker (recommended) docker compose up -d
  1. Configure the server:
cp .env.example .env # Edit .env with your settings

Development

  1. Clone the repository:
git clone https://github.com/rebots-online/mcp-chat-analysis-server.git cd mcp-chat-analysis-server
  1. Install development dependencies:
pip install -e ".[dev]"
  1. Run tests:
pytest tests/

Contributing

  1. Fork the repository
  2. Create a feature branch
  3. Submit a pull request

See CONTRIBUTING.md for guidelines.

License

MIT License - See LICENSE file for details.

Support

-
security - not tested
A
license - permissive license (MIT License)
-
quality - not tested

Facilitates semantic analysis of chat conversations through vector embeddings and knowledge graphs, offering tools for semantic search, concept extraction, and conversation pattern analysis.

  1. Key Features
    1. Quick Start
      1. MCP Integration
        1. Available Tools
          1. import_conversations
            1. semantic_search
              1. analyze_metrics
                1. extract_concepts
                2. Architecture
                  1. Prerequisites
                    1. Installation
                      1. Development
                        1. Contributing
                          1. License
                            1. Related Projects
                              1. Support